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Summary

Web measurements provide insights into the World Wide Web’s performance, secu-
rity, and privacy. Measuring a website appears to be simple: let a measurement tool
interact with it and perform the measurements. To achieve scale, automate the pro-
cess and set it to visit all desired sites. However, not all web users necessarily get to
view the same Web. For example, online advertising typically makes use of tracking
techniques, a privacy invasive measure, but advertisers tend to take measures to not
show advertisements to automated visitors in order to prevent fraud. Measuring web
privacy needs to account for such effects.

In general, automated measurement tools should be able to collect data from the
Web as users experience it. That is, being able to go beyond the Web shown only to
automated visitors. This becomes a necessity when web measurement tools are used to
gain insight into online privacy and online security on the Web. To this end, measure-
ment tooling must overcome two obstacles. First, websites limit reachability of
content. They do so not to stop automated measurements, but for functionality rea-
sons. Secondly, websites intentionally oppose automated visitors. They may
use blocking mechanisms such as captchas, or, more insidiously, tailor responses to
automated visitors, e.g., leaving out advertisements or videos. From a measurement
perspective, obstacles may result in blind spots which undermine a study’s validity
and limit its significance. This thesis explores and overcomes limitations of automated
web measurements.

In the first part, we address measures that limit content reachability as a side ef-
fect. We begin with overcoming the login barrier by designing a method to enable
automated login. We develop a framework, Shepherd, implementing this approach.
We validate Shepherd’s ability to achieve scale by performing an in-depth case study
of web session security over thousands of sites. Next, we turn to measuring differ-
ences in views offered to different clients. For that, we develop a framework to enable
data acquisition from multiple platforms simultaneously, enabling studies to discover
differences in how data is presented to specific clients. We validate its efficacy by per-
forming a price comparison study of flight vendors, acquiring data from these vendors’
desktop and mobile shops simultaneously. Our application is successful in collecting
data simultaneously, allowing us to identify strong indications of price differences
between platforms.

In the second part, this thesis focuses on methods used by websites that delib-
erately disturb a bot’s functionality and therefore undermine the reliability of auto-
mated measurements. We explore how fingerprint-based detection works and develop
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an automated approach to construct a bot’s fingerprint surface. We present a study of
1 million websites to determine the widespread of fingerprint-based detection. Next,
we address behavioural detection by developing the first Selenium-ready framework
that can simulate human interaction. Last, we explore the effects of bot detection in
a case study based on OpenWPM. OpenWPM is a web privacy measurement tool.
We investigate its reliability in the context of an adversary website. Our investiga-
tion shows that OpenWPM is prone to fingerprint-based detection and attacks on
its data recording. We develop countermeasures that circumvent our found attacks
and detection methods. Finally, we compare measurements taken with regular Open-
WPM to our countermeasures-enriched version of OpenWPM. We find significant
differences that can affect privacy web measurements. From this, we conclude that
countermeasures are necessary for reliable measurements with OpenWPM.

Overall, this thesis shows that both types of obstacles can be overcome, albeit at
the cost of considerable engineering efforts. We find significant differences arise from
overcoming certain obstacles. We thus conclude that, for some types of web measure-
ments, such efforts are necessary.
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Samenvatting

Webmetingen geven inzicht in de prestaties, veiligheid en privacy van het World Wide
Web. Het meten van een website lijkt eenvoudig: laat een meetinstrument ermee in-
teracteren en voer de metingen uit. Om dit op grote schaal uit te voeren, automatiseer
je het proces. Echter: niet alle webgebruikers krijgen noodzakelijkerwijs hetzelfde te
zien. Zo nemen adverteerders maatregelen om geen advertenties te tonen aan geau-
tomatiseerde bezoekers (web bots) om fraude te voorkomen. Daarbovenop gebruiken
advertenties vaak trackingtechnieken, een privacyschendende maatregel. Dat levert
een uitdaging op voor het meten van online privacy.

Idealiter zou een geautomatiseerd meetinstrument het Web moeten kunnen meten,
zoals reguliere gebruikers het ervaren, niet alleen het Web zoals het enkel aan geau-
tomatiseerde bezoekers wordt getoond. Dit is noodzakelijk voor webmetingen van
online privacy en online security. Hiertoe moeten meetinstrumenten twee obstakels
overwinnen. Ten eerste zijn er stukken van websites die niet voor iedereen toegankelijk
zijn. Het tweede obstakel is dat websites somes web bots proberen buiten te houden.
Dit kan door de site te blokkeren, bijvoorbeeld door middel van CAPTCHA’s, maar
ook door de inhoud on-the-fly aan te passen aan de bezoeker. Zo kunnen sites adver-
tenties niet tonen aan web bots om advertentiefraude te voorkomen, of video’s niet
tonen om minder kosten te hebben aan verstuurde data. Hoewel er legitieme redenen
zijn om zulke maatregelen te nemen, dreigen dit soort obstakels in blinde vlekken
voor webmetingen te resulteren. Dat ondermijnt de validiteit van de meting. Deze
dissertatie onderzoekt deze types obstakels voor geautomatiseerde webmetingen en
demonstreert hoe deze overwonnen kunnen worden.

In het eerste deel behandelen we obstakels die als neveneffect de bereikbaarheid van
inhoud beperken. Als eerste onderzoeken we het type obstakel waarbij de web bot
niet alle inhoud van de website kan zien. Bij dit obstakel richten we ons op inhoud
achter logins en op verschillen in getoonde inhoud. We overwinnen de login barrière
door een methode te ontwerpen om geautomatiseerd inloggen mogelijk te maken. Dit
ontwerp implementeren we in een tool, Shepherd. We valideren de schaalbaarheid
van Shepherd door een diepgaande casestudy uit te voeren van de beveiliging van
websessies op duizenden sites.
Vervolgens richten we ons op het meten hoe websites verschillende typen bezoekers
(desktop, mobiel) verschillende inhoud tonen. Hiertoe ontwikkelen we een tool om
gegevens van meerdere platforms tegelijk te verzamelen. Met behulp van dit tool
kunnen onderzoekers te weten komen of er verschillen zijn in de inhoud die verschil-
lende types bezoekers te zien krijgen. We valideren de doeltreffendheid van de tool
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door een cross-platform prijsvergelijkingsstudie uit te voeren. We vergelijken prijzen
van vliegreizen van verschillende vluchtaanbieders, waarbij we simultaan gegevens
verkrijgen van de desktop-site, de mobiele site en de mobiele app. Onze toepass-
ing is succesvol in het simultaan verzamelen van deze gegevens, waardoor we sterke
aanwijzingen van prijsverschillen tussen deze platforms kunnen identificeren.

In het tweede deel richt dit proefschrift zich op methoden die gebruikt worden
door websites die opzettelijk web bots bestrijden en hierdoor de betrouwbaarheid van
geautomatiseerde metingen ondermijnen. We onderzoeken hoe web bots gedetecteerd
kunnen worden op basis van kleine verschillen in de zogenaamde ‘browser fingerprint’
vergeleken met reguliere browsers. We ontwikkelen een geautomatiseerde aanpak om
de hieruit volgende ‘fingerprint-surface’ van een bot te bepalen. We analyseren de Top
1M websites om te bepalen in hoeverre fingerprint-based bot detection in de praktijk
gebruikt wordt.
Dit volgen we op door web bot detectie door middel van gedragsdetectie te bestud-
eren. We ontwikkelen een raamwerk voor de browser-automatiseringstool Selenium
dat Selenium op realistisch menselijke wijze laat interacteren met webpagina’s.
Tot slot onderzoeken we de effecten van botdetectie in een casestudy. OpenWPM
is een meetinstrument voor webprivacy. We onderzoeken de betrouwbaarheid ervan
in de context van een website die actief probeert OpenWPM’s metingen te dwars-
bomen. Uit ons onderzoek blijkt dat een website OpenWPM kan herkennen aan zijn
browser fingerprint – en dat OpenWPM vatbaar is voor aanvallen op de dataverza-
melingsfuncties. We ontwikkelen tegenmaatregelen die de gevonden aanvallen en de-
tectiemethoden verhelpen danwel omzeilen. Tot slot vergelijken we metingen tussen
de reguliere OpenWPM-versie en onze, met tegenmaatregelen verrijkte, OpenWPM-
versie. We vinden significante verschillen in resulterende privacymetingen tussen de
tools. Hieruit trekken we de conclusie dat tegenmaatregelen noodzakelijk zijn voor
betrouwbare metingen met OpenWPM.

In het algemeen toont dit proefschrift aan dat beide soorten obstakels kunnen worden
overwonnen, zij het ten koste van aanzienlijke technische inspanningen. We vinden
significante verschillen door deze barrières te overwinnen. We concluderen dan ook
dat dergelijke inspanningen, voor sommige typen webmetingen, noodzakelijk zijn.
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Chapter 1

Introduction

Web measurements are instrumental to a secure Web. They provide insights into
how part of the Web is used (or misused), bring privacy violations to light, and
report on the effectiveness and proliferation of security measures. The scale of a
web measurement study often defines the scope of gained insights; wherefore, it is is
an essential requirement. A standard tool to achieve scale in measurements is web
automation, i.e., scripting web clients to autonomously interact with web servers.
Ahmad et al. [ADZ+20] reported that 16% of studies published at major security and
privacy venues nowadays use automated clients (also called bots or web bots). While
various frameworks (e.g., Scrapy, Selenium, Puppeteer, etc.) exist that automate
web client interaction, these lack functionality to record data of such interaction,
such as measurements on cookie operations, HTTP messages, and requested DNS
records. In response, several measurement frameworks have been developed, e.g.,
OpenWPM [EN16], VisibleV8 [JK19], Tracker Radar Collector [Duc23], and others.
These combine client automation and measurement instrumentation out of the box.
Making instrumentation accessible reduces some heavy lifting researchers face when
conducting web measurements. Still, an important issue is that the use of tooling
must not skew the outcome of the experiment. However, as with most technology,
web automation can have side effects posing obstacles to measurements. For example,
advertising networks pay for ads to get the user’s attention. When they show ads to
a bot, they spend money for no effect. So, it is in an advertiser’s interest to treat
bots differently from human visitors, e.g., by not showing any ads. Such practices do
not only limit the significance of an automatically conducted measurement, operators
can use them to hide their real doings. Consequently, drawing conclusions from
measurements that do not account for such obstacles inherit the risk of developing
incomplete and flawed privacy and security solutions for the Web.

This thesis aims to overcome obstacles for web measurement studies. Hence, it
must investigate those obstacles to devise appropriate methods and tooling to achieve
this goal. However, overcoming obstacles may impact web measurements, which must
also be regarded. To cover both aspects, we formulate the following main research
question for this thesis:

Main RQ: How to overcome obstacles for automated web measurements
and what is the impact of doing so?

In this work, we recognise two main obstacles that web measurements face: those
that personalise and tailor the content behind them to the visitor and those that
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1.1 – Thesis contributions

keep out automated visitors. In more detail, some standard features and behaviours
on websites offer desirable functionality, but, as a side effect, pose difficulty for web
measurements. Since their primary purpose is different from interfering with web
measurements, nor is it to stop automated visitors, we call such features unintended
obstacles. In contrast, obstacles that treat bots differently from human users serve a
different purpose. Such bot defences are put in place to protect a party (e.g., a site
or script) against automated threats or to mislead automated visitors, wherefore we
name them deliberate obstacles.

In general, we see two typical situations where unintended obstacles occur: In the
first situation, a website limits the reach of an automated visitor as it makes its pages
or elements difficult to find or access. A common challenge is website areas (e.g., spe-
cific pages, elements, or functionality) that require an authenticated session. Given
that more than half of the Top 100K websites possess a login page [vAHS17], auto-
mated visitors cannot access these areas on a significant portion of the Web. The sec-
ond scenario concerns tailored website responses based on different criteria, such as on-
line price differences based on a client’s history [HSL+14] and fingerprint [HTW+18],
different website versions due to a client’s device class [vGPJ19; YY20], or deviating
content based on a user’s geolocation [FMS+15; ITK+16; EAW+19]. Consequently,
relying on one user agent to explore a website may reveal only some variants of a site.

In contrast, deliberate obstacles occur when websites use bot defences to react on
bot visitors. Bot defence measures fall into two groups: those that rely on identifying
the visitor as a bot and those that do not need this. For example, measures such as
blocking captchas and randomising elements to prevent scraping may be passive,
that is, they can be applied to all visitors. Other measures rely on detection; for ex-
ample, not wasting bandwidth on bots (by not delivering videos or images) requires
classifying the visitor as a bot. While preventive measures stop the interaction with
a bot, bot detection is more subtle, enabling a party to pick any suitable countermea-
sure, including captchas. Hence, our focus lies on bot detection methods.

Putting these two different purposes for obstacles for automated web measure-
ments into the context of the main research question, we arrive at two sub-research
questions for each purpose.

RQ1.1: How to overcome unintended obstacles?

RQ1.2: What is the impact of overcoming unintended obstacles?

RQ2.1: How to overcome deliberate obstacles?

RQ2.2: What is the impact of overcoming deliberate obstacles?

Nevertheless, RQ1.2 and RQ2.2 are difficult to assess in a generic fashion. Web
measurements are diverse and the impact on measurements varies with the goal and
parameters of a specific study. Thus, any attempt to answer such question will be in-
complete. Still, we can approach the answer in the context of this thesis by evaluating
conducted research.

1.1 Thesis contributions

The research in this thesis offers three types of contributions: experiments that mea-
sure aspects of the Web, methods to acquire and analyse such data, and investiga-
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Chapter 1 – Introduction

tions to challenge the security of automated web measurement tools. Due to the
ever-evolving nature of the Web, repeating the experiments will result in different
measurements. Similarly, technological advancements might necessitate the expan-
sion of the acquisition and analysis methodologies. However, the concepts behind
these methodologies do stand the test of time. With respect to the research questions
above, this thesis makes the following contributions.

Key contributions in overcoming unintended obstacles. This thesis con-
tributes by designing and implementing tools that increase web measurement cov-
erage. We identify two open research areas relating to tailored content where this
thesis provides new tools and insights.

• Design and implementation of a framework to automatically log in on websites.
User authentication is a standard procedure to provide access to personal data
and sensitive functionality online. We explore challenges for automation frame-
works to reach post-login areas while treating the suspected website as a black
box. We build a framework to enable end-to-end automation of the login pro-
cess. We show that studies covering thousands of sites with logins are possible
while also accomplishing a better success rate in reaching post-login areas per
attempt with respect to previous work. Till today, our framework has been used
in three peer-reviewed publications [MADWeb20; CoSe21; SecWeb21].

• Methodology and framework to elicit view-dependent price differentiation. Web-
sites adjust content to visitors based on various factors. Deducing the influence
of a single factor can be difficult from an outsider’s perspective. This thesis
systematically studies price differentiation depending on the chosen distribu-
tion channel (also called view). In detail, we devise a method and develop a
framework to collect data from multiple views. We evaluate our framework by
conducting a price-comparison study of travel agents using mobile phones, desk-
top browsers, and different localisations, showing that price differences between
views exist.

Key contributions in overcoming deliberate obstacles. To overcome delib-
erate obstacles, we study how websites can recognise that a visitor is a bot directly
or indirectly. To directly identify a bot, a party must know beforehand what distin-
guishes this specific bot. Hence, this approach can only detect instances of specific
automated visitors. In contrast, a party can gather data that reveals patterns divert-
ing from human visitors. While this approach can detect previously unknown bots,
it requires more time and a sufficient number of interactions by the client. We make
the following contributions to overcome both methods.

• Methodology and tooling to construct a bot’s fingerprint surface. A requirement
for specific detection is that a bot inhibits properties distinctive from clients
controlled by human visitors. The ability to reliably identify such properties
enables both the development of detection and anti-detection techniques. Our
contribution is a generic method to construct a bot’s fingerprint surface – a set
of distinctive properties. We evaluate our approach against famous automation
and measurement frameworks, revealing identifiable properties in most of them.
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• Measurements to determine the proliferation of direct bot detection. Based on
our findings above, we devise a method to evaluate whether a website includes
bot detection scripts. Using this method, we conduct a scan on a million web-
sites. Our study suggests that at least 12% of websites deploy bot detection.

• Model, method and implementation for human-like interaction simulation. A
client’s interaction characteristics may reveal whether a client is a bot. However,
to what extent automation frameworks account for this aspect or whether a
solution exists to simulate realistic interaction by web users is not well-known.
We investigate Selenium’s interaction characteristics, one of the most popular
automation frameworks, and provide a library to simulate human-like behaviour.
Finally, we propose a theoretical model that defines certain levels of realism,
allowing developers to classify detectors and simulators by their capabilities.

Key contributions in measuring the impact of overcoming obstacles. To
address this aspect, we provide two case studies that require overcoming unintended
or deliberate obstacles. The two related chapters are marked with case study in the
title. The case studies’ contributions can be summarised as follow:

• Large-scale evaluation of session security flaws in the wild. Many previous
studies have tested for session security flaws. However, none of these considered
logging in, reached a large number of websites, or included a comprehensive
security evaluation. We present the first study that provides an extensive web
session security evaluation while also reaching a significant number of websites.
To accomplish an extensive security evaluation, we collect data from all phases
of a user session: pre-login, logging in, post-login, and after logging out while
testing for a wide number of known flaws for web sessions.

• Hardening of a measurement framework and measuring the effect of hardening.
Given that 12% of sites deploy bot detection, it becomes an important issue how
bot detection influences web measurements. However, as long as a measurement
framework’s fingerprint surface and instrumentation reliability is unknown, this
issue remains challenging to address. To that end, we provide a deep investiga-
tion of the resilience of a well-established web privacy measurement framework
against detection and attacks on its instrumentation. We develop an improved
version that resists fingerprint-based detection, and all found attacks. Finally,
we determine the differences between a hardened and a non-hardened version,
and find that privacy studies can be significantly affected.

1.2 Thesis outline and author contribution

The contributions of this thesis spread over two main parts. The first part “Increasing
Measurement Coverage” addresses challenges relating to the unintended obstacles
for web measurement studies. The second part “Advancing Attacks and Defences”
deals with deliberate obstacles and approaches to circumvent such obstacles. As this
thesis follows a cumulative publication model, each chapter in the main parts relies
on one peer-reviewed publication. An overview of these chapters, their underlying
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publications, and a list of the author’s contributions to these publications is depicted
in Figure 1.1. The following paragraphs provide summaries for each chapter and
describe the author’s contributions. Note that well-defined terminology avoids the
problem of an ambiguous interpretation. Therefore, we use the Contributor Roles
Taxonomy (CRediT) [BAA+15] which provides such terminology.1

Figure 1.1: At a glance: thesis structure, publications, and author contributions

Part I – Chapter 4: Overcoming the Login Barrier. This chapter intro-
duces Shepherd, a framework to automate the login process on websites. To that
end, Shepherd offers automated routines for sourcing credentials, finding login pages,
conducting login routines, validating login success, and logging out. In an initial
evaluation, Shepherd logged in on over 7K websites of a set of ∼50K websites. The
chapter concludes with a performance comparison between Shepherd and previous
approaches as well as a discussion of potential use cases.

Personal contribution. Marc Sleegers originally invented Shepherd during his
bachelor thesis [Sle17]. He wrote the first version of Shepherd that processes static
HTML pages. I re-wrote Shepherd from scratch to make it fully compatible with
modern websites that serve dynamic content. Together with Hugo Jonker, I am the
primary author of the resulting publication [MADWeb20]. I carried out the investi-
gation, formal analysis, validation and created visualisations.

Part I – Chapter 5: Multi-platform Data Acquisition. Chapter 5 proposes
a data collection method to simultaneously collect prices from different platforms. It
presents an implementation that manages synchronous data collection of different sites
and heterogeneous clients, such as mobile devices and desktop computers. Finally,

1A brief explanation of terms defined in CRediT can be found on https://www.elsevier.com/a

uthors/policies-and-guidelines/credit-author-statement
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it reports on our evaluation of five travel vendors, where we find vital signs that
platform-specific pricing exists in practice.

Personal contribution. I initiated the concept of this project and outlined it
into a master’s project. With Hugo Jonker, I supervised Godfried Meesters’ master
project [Mee21], intending to publish the results. For the publication, I fully reworked
the data analysis. Hugo Jonker and I authored the resulting paper [MADWeb23].

Part I – Chapter 6: Case Study: Session Security from Pre-Login to Post-
Logout. This chapter shows a specific application of Shepherd – a large-scale and
comprehensive session security study on websites. It starts with describing how we
created a post-login-logout data set and investigates its representativeness. Then, it
dives into the security assessment of ∼6K websites, which provides insights into all
phases in the lifecycle of an authenticated user session for these sites. The evaluation
demonstrates the prevalence of well-known session security flaws.

Personal contribution. The journal paper [CoSe21] used in this chapter is a joint
effort by all authors. I contributed to the methodology, enhanced Shepherd, performed
the investigation and participated in the data analysis. Lastly, I wrote a significant
part of the paper.

Part II – Chapter 7: Specific Detection of Web Bots. This chapter shines
a light on browser fingerprinting techniques that distinguish automated from regular
web users. It starts with investigating the inner functioning of fingerprint-based bot
detection by reverse engineering a commercial bot detector script. Insights from
this process led to a methodology for determining unique properties in automation
frameworks. This chapter continues with investigating state-of-the-art automation
frameworks to reveal their identifiable properties. It further assesses their use for bot
detection by conducting a 1M sites web measurement study. Finally, this chapter
provides insights into bot detection’s effect by creating a less detectable automated
Chrome browser to visit sites with detectors.

Personal contribution. The initial idea for this project arose during our work on
Shepherd. Gabry Vlot took up this project under the supervision of Hugo Jonker and
Greg Alpár. He investigated the commercial bot detector, developed the used tools
and conducted an initial measurement in his master’s thesis [Vlo18]. Hugo Jonker
and I authored the resulting conference publication [ESORICS19]. For this publica-
tion, I re-executed the investigation, performed the formal analysis, and designed and
conducted the validation.

Part II – Chapter 8: Generic Detection of Web Bots. Fingerprint-based bot
detection is limited to the known set of identifiable properties in automation tools.
Generic detection approaches can overcome this limitation. This chapter investigates
whether the famous automation framework Selenium is prone to detection based on
artefacts in its behaviour. Second, it proposes HLISA, a framework to add human-
alike interaction to Selenium-based bots. It then introduces a theoretical framework
which models the arms race between detectors and simulators regarding their capa-
bilities. Finally, according to our proposed framework, it ranks HLISA’s capabilities
to circumvent bot detection.
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Personal contribution. The underlying paper [IMC21] relies on two student projects.
Daniel Goßen [Goß20] investigated modifications to the OpenWPM framework to hide
identifiable properties, and David Roefs [Roe21] developed a framework to mimic
human-like interaction. The ideas for both projects arose during my work on Chap-
ter 9. I co-supervised David’s project and supported Daniel with my findings at the
start of his project. Hugo Jonker and I are the principal authors of this paper. I
conducted the validation and formal analysis and contributed with visualisations.

Part II – Chapter 9: Case Study: Overcoming specific Bot Detection. This
chapter evaluates the reliability of measurement frameworks in the presence of hostile
websites. To that end, it provides a case study of OpenWPM – an often-used web
privacy measurement framework. The results of the presented investigation uncover
identifiable properties and attacks against the reliability of this framework. Then,
this chapter provides a re-implementation of OpenWPM’s instrumentation, which is
resistant to the previous found attacks and less detectable. Experiments with this
new version show a significant difference from vanilla OpenWPM with substantial
effects on privacy measurement studies.

Personal contribution. The concept for this work arose from the publication used
for Chapter 7 and in discussions with my supervisor Hugo Jonker. I took the lead in
planning, designing, and performing the research, as well as authoring and presenting
the paper [CoNEXT22].
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Chapter 2

Background

This thesis examines issues concerning the automation of web measurements. We
assume that the reader is familiar with the fundamental technological concepts of the
Web; hence, we focus on the relevant materials for automated web clients. We start
with building blocks for automating web measurements (Section 2.1). Then we derive
a classification based on some of the building blocks and existing web automation
approaches (Section 2.2). Afterwards, we look at the ethical aspects of automation
and how we address common issues to reduce potential harm (Section 2.3).

2.1 Principles of web measurement automation

The Web is an information space in which machines operate by exchanging messages
amongst each other [BBC+04]. In the context of this thesis, the primarily encountered
machines operate according to the traditional client-server model. A web study must
collect and analyse data on the interaction between these parties to examine the
Web. There are two approaches to collecting such data. First, a study can collect data
from web users during their interaction with servers, e.g., through soaking up network
traffic or with the help of crowd-sourcing.1 Second, it can run its own web clients. The
results vary depending on various factors, such as the observed client characteristics
and targeted websites. A study cannot control all of these factors. However, in the
latter approach, the study must define the clients and targeted sites. This raises
the point of how it should set these parameters. In this section, we describe how
studies select websites and three aspects that may be crucial for determining suitable
web clients: the internal subsystems used to process modern websites, capabilities
for executing code to support dynamic websites, and techniques to re-identify web
clients.

2.1.1 How to choose websites for studying

Any web measurement study needs to define its target domains. A desired goal in
many studies is to conduct the measurement on sites that approximate the experi-
ence of the majority of web users. That is, the more popular a site, the better the
approximation. Top lists that rank websites by popularity may serve this purpose
best. However, the determination of popularity depends on the particular top list

1i.e., transferring tasks to volunteers or/and paid individuals
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creator. For example, top lists like the Alexa Global Top 1M, the Cisco Umbrella 1M,
the Majestic Million, and Quantcast have gained some popularity in research. Still,
each of these lists relies on individual metrics for constructing its ranking.2 Previous
work [SHG+18; LVT+19] has questioned whether these lists fulfil requirements of sci-
entific research, such as representativeness, soundness and reproducibility. A result
of this process is the Tranco list,3 a more robust list as it combines multiple top lists
to achieve better domain stability. It should therefore be the preferred solution for
researchers over top list without measures to ensure robustness.

2.1.2 Bot terminology

The literature uses many terms to refer to clients who have been automated, but most
of them imply a specific application context. For example, previous work (e.g., [Eic95;
TS06]) has used the terms crawler and spider to denote automated clients indexing
web pages or content. In more detail, such clients traverse pages of one or multiple
websites to search for links to other pages or to download certain documents. Simi-
larly, a scraper primarily aims to extract website content (e.g., [GLL+14]). Typical
examples of scrapers are web clients that automatically collect images or pricing in-
formation from websites. Throughout this work, we prefer the term web bot, as to
the best of our knowledge, it does not imply a limited scope. We define a web bot,
with respect to the definition in [Mer22], as a programme that automates tasks using
web technologies. We will use this term interchangeably with automated visitor or
client.

2.1.3 Browser subsystems

Web browsers perform similar duties to display and interact with websites. However,
there is no common standard to develop a browser [Kos18], wherefore browsers will
vary in their implementations. Still, it is possible to abstract from specific implemen-
tations to identify reoccurring components across multiple browsers. Grosskurth and
Godfrey [GG05] took up this idea and proposed a reference architecture that describes
a browser’s subsystems and their dependencies. Their model consists of eight subsys-
tems (depicted in Figure 2.1). As their work dates back to 2005, their model may not
account for systems providing newer functionality (e.g., WebAssembly4). However,
their model is sufficient to distinguish between different automated web clients, which
we use in Section 2.2. We summarise these subsystems as follows:

• User interface: contains interactive elements for user input and passes on user
input to the browser engine.

• Browser engine: gives control over the rendering engine and can alter its
behaviour. Some browser variants implement the browser and rendering engine
in the same subsystem. A rendering engine creates graphical representations
of the loaded content. To do so, it exchanges information with multiple other
subsystems. In the remainder of this thesis, we will discuss them as one.

2For further details on the composition of these lists, we refer to the work by Scheitle [SHG+18]
and Le Pochat et al. [LVT+19], that recently reported on the metrics used in these lists.

3https://tranco-list.eu/
4https://developer.mozilla.org/en-US/docs/WebAssembly
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Figure 2.1: A reference architecture for browsers (adopted from [GG05]).

• Networking subsystem: takes over communication-related tasks, such as
requesting documents via HTTP.

• JavaScript interpreter/engine: runs web page scripts or browser extension
scripts.

• HTML/XML parser: parses HTML/XML documents to build the Document
Object Model. Note that some (e.g., [GI11]) see this subsystem as a part of the
rendering engine.

• Display backend: provides primitives for graphical representations. The prim-
itives can depend on the underlying OS.

• Data persistence: stores website data, session data, user settings, and so on.

Although plenty of browsers exist today, most web users see the Web through not
more than three browser engines.5 These engines are Blink (Chrome and Chromium
variants like Edge, Opera, Samsung Internet, etc.), Webkit (Safari and iOS-based
browsers), and Gecko (Firefox). All three engines rely on different JavaScript engines:
SpiderMonkey (Gecko), V8 (Blink), and JavaScriptCore (Webkit). However, browser-
based JavaScript engines also exist outside of the web browser environment. For
example, Node.js uses Chrome’s V8 JavaScript engine [CFA+23].

2.1.4 The browser execution environment

Browsers construct the Document Object Model (DOM) to enable dynamic web pages.
The DOM is an object-based representation of an HTML document in memory. Fig-
ure 2.2 depicts a reduced DOM in a browser environment for the HTML code in
Listing. 2.1. Notably, the objects follow a tree hierarchy with the window object as
the root. The window object represents the current document in a browser tab. The
parsed version of a web page’s HTML content is located under the document object.
Besides the document object, several other objects (e.g., navigator, storage, etc.)
descend from the window object. These objects, including the window object, are

5Given browser market share statistics from 2023 [Sta23; Sim23]
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<!DOCTYPE html>
<html>
<head>
<title>Web Scrapology</title>
</head>
<body>
<div>
<h1>Example HTML document</h1>
<p>Lorem ipsum dolor sit amet,

consectetur adipiscing elit.
</p>
</div>
</body>
</html>

Listing 2.1: Example HTML document
Figure 2.2: Corresponding DOM tree in
a browser environment

interfaces for advanced interaction with the browser. They cover a broad functional
spectrum for developers, such as network communication, storing data persistently,
retrieving information from the browser, and playing audio and video.

Websites run JavaScript or CSS inside the browser to alter the DOM and interact
with the browser. For that, browser vendors follow standards so that websites can
remain functional regardless of the used browser platform. The ECMA TC39 com-
mittee specifies the JavaScript API and its expected behaviour in the ECMAScript
standard. The latest approved version is ECMA-2622,6 which is available in all mod-
ern browsers. However, the ECMAScript is independent of interfaces defining the
interaction with web pages and the browser environment, as these are specified in
separate standards. The document object is the interface to operate on the DOM
and implements the DOM specification. This specification (earlier called DOM lev-
els) is nowadays a living standard, that is, a specification that can receive further
non-breaking updates, even after its official release. In contrast, the Web API7 de-
fines interfaces to interact with the browser. Organisations like the Web Hypertext
Application Technology Working Group (WHATWG) and the W3C take care of the
standardisation.8 In addition, they define the Web Interface Definition Language9

(Web IDL), the binding between Web API and JavaScript.
Note that a web client may divert from the standards above, which is true even

for mainstream browsers. For example, Apple declined to implement specific Web
APIs that pose a risk to web user privacy [Cim20], while Chrome implements these
features. A user may also use a preliminary browser, whose version contains features
that are not yet part of a stable release. Other reasons may be browser extensions or
frameworks that alter the DOM. These must not change standardised functionality
but can make a client more distinguishable when changing DOM properties [KIS+20].

6https://tc39.es/ecma262/
7An overview as well as specific descriptions are provided in the MDN documentation under

https://developer.mozilla.org/en-US/docs/Web/API
8For an overview, see https://www.w3.org/TR/?tag=webapi
9https://webidl.spec.whatwg.org/ and https://developer.mozilla.org/en-US/docs/Glossar

y/WebIDL
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2.1.5 Web client re-identification

The re-identification of web clients has many applications on the Web. Its usage en-
compasses the establishment of user-authenticated sessions [CoSe21], tracking of web
users [RKW12; AEE+14; EN16], and the identification of web bot frameworks [ES-
ORICS19; JK19]. Approaches for re-identification are either stateful or stateless,
depending on whether they store information on the client.

Stateful re-identification. Stateful techniques identify a client by storing unique
identifiers on that client. Cookies are the traditional means to store client-side in-
formation via an HTTP request or JavaScript API call. A cookie has a limited size
(4KB) and is uniquely identified by a domain, URL path, and a key. Alternatively,
browsers provide JavaScript-based APIs, which come with larger space. The Web
Storage API offers two interfaces: localStorage and sessionStorage. Both store
key-value pairs, but data in the sessionStorage lasts only as long as a user’s tab
is open. Another variant is IndexDB, an interface for storing large amounts of data
organised in a database.

Access to stored objects underlies the Same-Origin Policy (SOP). SOP restricts
access by parties (web servers and scripts) with a different origin and is enforced by
the browser. A party’s origin must match the stored object’s protocol, host, and
port, while the path can vary (cf., Figure 2.3) to satisfy the SOP. Thus, a site (e.g.,
http://a.com) setting an identifier on a visitor’s client can read the identifier only
from clients that visit pages belonging to the same host. This situation is commonly
denoted as first-party context. When a.com includes a different party in the same
context (e.g., via a script-tag), then this party (http://b.com) runs in the same
context and may access a.com’s stored objects via JavaScript. To separate both par-
ties, a.com can also include b.com via an (e.g., via an iframe-tag), which makes b.com
a so-called third party. Due to the third-party context, b.com manages its separate
storage on a client. Moreover, it can access its stored objects on that client from any
site which includes b.com in a third-party context. This access provides b.com with
the ability to re-identify clients across sites (also known as third-party tracking). Note
that some browsers (e.g., Total Cookie Protection10in Mozilla’s Firefox browser) have
started to isolate website caches to stop such techniques from further being used for
cross-site tracking.

Figure 2.3: Example URL scheme

Stateless re-identification. In the literature, stateless re-identification is known
as browser fingerprinting or device fingerprinting. Throughout this thesis, we will use
the term browser fingerprinting (or just fingerprinting).

Browser fingerprinting builds unique identifiers from client properties. The premise
is that clients leak information about their distinct state or composition in used hard-

10https://blog.mozilla.org/security/2021/02/23/total-cookie-protection/
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ware and software components. Hence, browser fingerprinting does not require storing
identifiers on the client side since the identifiable information is retrieved from the
client. An exemplary workflow to create a fingerprint is as follows. During a client-
server interaction, the server may examine the client’s traffic characteristics which
enable fingerprinting, e.g., as it may leak information about the client’s used soft-
ware. The server may also serve HTML, CSS, or JavaScript files, which it uses to
obtain identifiable properties. Afterwards, served scripts send collected properties
back to the server, which may be combined into a hash. The next time a client vis-
its the server, it repeats the same procedure and compares the resulting hash with
previously collected hashes to re-identify the client.

However, not all properties may be suitable for building a fingerprint. A finger-
print technique’s usefulness depends on the uniqueness and stability of the output.
When a fingerprint is not unique, a web server or script identifies two or more clients
as one. The information entropy of a fingerprint determines how many clients can
be separated. Even techniques with low entropy have value for fingerprinting, as
combining multiple techniques increases the overall information entropy. In contrast,
stability refers to the consistency of properties over time. Any change in a finger-
print’s property results in a new hash that does not match the previous one. In
addition, Mowery and Shacham [MS12] name three criteria that can be important for
fingerprinting techniques, i.e., they should be irrecognisable for users, orthogonal to
other fingerprint techniques, and easy to obtain.

2.2 Classifying web bots

Web bots come in various shapes. Some use regular web browsers to automate tasks;
others resemble regular web browsers by reimplementing their functionality. In either
case, their need for scalability differs significantly from those of ordinary web users.
Consequently, some automated clients use custom implementations to improve sta-
bility and performance, sometimes at the cost of functionality. Such deviations can
lead to different results (e.g., due to compatibility issues). This section shines a light
on various forms of web bots.

We consider three entities that any bot shares to construct our classification:

1. user commands and scripts provide the bot’s logic;

2. automation components enable (remote) control of web clients; and

3. web clients execute retrieved instructions.

Bot operators programme bots via commands or scripts that contain sequences of
instructions to be executed. These can be as simple as a single command to down-
load a web page or as complex as mimicking real user interaction. The automation
component defines how user scripts must express instructions by offering an Appli-
cation Programming Interface (API). It further translates instructions into specific
calls that it channels to controlled web clients. Web clients are the interface to the
Web or local services. Thus, they act as mediators, which substantially influence
the outcome of interactions with the service and they can vary in their capabilities.
While user-provided commands depend on the bot operator, the other two entities
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define the technical approach to automate a web client. We use these two entities to
construct our classification, as listed in Table 2.1. In the following, we describe each
class and explain some selected implementations in more detail.

Table 2.1: Overview of different web client automation approaches

category examples

1. Non-consumer clients
(a) HTTP engine interfaces Wget, curl, request, scrapy11

(b) Headless browsers Headless Firefox, headless Chrome
(c) Custom headless browsers PhantomJS, Nightmare, Scrapy + Splash,

HTMLUnit12

2. Browser remote controls
(a) Browser-integrated APIs CDP, Marionette, browser CLIs
(b) Ready-made automation frameworks Selenium, Puppeteer, Playwright, Cypress, etc.

3. Out-of-band controls
– Tweak existing browser Playwright
– UI automation pyautogui13, Power Automate14, cliclick15, etc.

2.2.1 Automation via non-consumer clients

To this category belong web bots that cover only a subset of the entire functional
spectrum of a regular web browser. Thus, they need fewer subsystems than a web
browser, which can give them better speed and makes them consume fewer resources.
The dotted lines in Figure 2.1 show the subsystems they may include compared to
regular browsers. In the following, we distinguish between three types of automated
non-consumer clients.

HTTP engine interfaces are standard tools like Wget16 and curl17, libraries like
Python’s request package18, or more advanced scraping frameworks like Scrapy.19

Their primary functionality is to enable the scripting of networking tasks. Thus, they
necessarily contain a networking subsystem to download websites but do not render
a page’s DOM. As a result, HTTP engine interfaces are the fastest and most suitable
when the goal is to download static content from the web. They can also include or
are used together with parsers to enable the selection of elements in documents and
cookie handling (see black dotted boxes in Figure 2.1).

Headless browsers are modified variants of regular consumer browsers often shipped
together with the official consumer browser. Headless browsers are particularly de-
signed for web automation tasks. As their name tells, they do not offer a UI subsystem

11https://github.com/scrapy-plugins/scrapy-splash
12https://htmlunit.sourceforge.io/
13https://pyautogui.readthedocs.io/en/latest/
14https://learn.microsoft.com/en-us/training/modules/pad-mouse-keyboard/
15https://github.com/BlueM/cliclick
16https://www.gnu.org/software/wget/
17https://curl.se/
18https://pypi.org/project/requests/
19https://docs.scrapy.org/en/latest/topics/architecture.html
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(grey dotted boxes in Figure 2.1) and may deviate in their capabilities and implemen-
tation from their native counterparts. For example, the standard headless variant of
Chromium cannot run browser extensions [Sto17]. Since February 2023, Google has
offered a version that avoids this limitation using a code base shared between native
and headless Chromium [BK23]. Headless Firefox and headless Chrome/Chromium
are the two common headless variants, as Apple does not provide a headless browser.

Custom headless browsers lack, similar to headless browsers, a graphical UI. In
addition, they use a custom implementation of the browser engine and perhaps other
subsystems. While customisation can result in better performance, it becomes more
challenging to maintain the code base.20 Custom headless and headless browsers can
produce graphical representations of a webpage by rendering an image. Well-known
examples of this class are PhantomJS21 and Nightmare.22 Nevertheless, HTTP en-
gines can also fall under this category, but only if they are enhanced with rendering
capabilities. For example, some scraping providers use Splash23 to enable page ren-
dering with Scrapy.

2.2.2 Browser remote controls

This category includes frameworks and interfaces that enable remote controlling for
web and headless browsers. We distinguish between browser-integrated APIs and
ready-made automation frameworks. The former are APIs shipped with a browser
and specifically developed for the corresponding browser engine. As a result, they
provide a wide range of control features, such as advanced debugging capabilities. On
the other hand, this platform dependency limits their use for cross-platform automa-
tion. Variants of browser-integrated APIs are Chrome DevTools Protocol (CDP)24

for Chrome and Chrome-based variants,25 as well as Marionette26for Firefox. Besides
these APIs, browsers usually allow remote controlling via a CLI.27

Ready-made automation frameworks enable control over multiple browser plat-
forms. In practice, they may not reach as deep as browser-integrated APIs when
giving control over the browser; for example, they may not provide access to the
browser’s internal debugging interface. Selenium28 is the oldest framework in this
category and the most popular framework used for web studies [ADZ+20]. It is also
the principal automation framework used in this thesis. Figure 2.4 shows the compo-
nents used in a Selenium-specific automation pipeline. Selenium provides high-level
language-specific APIs for sending commands and retrieving responses via a (c) Web-
Driver client. The WebDriver client communicates via a (d) well-defined interface29

20A well-known example is PhantomJS, which got suspended due to the lack of maintainers. The
original discussion can be found on its Github repository: https://github.com/ariya/phantomjs/i
ssues/14548.

21https://phantomjs.org/
22https://github.com/segmentio/nightmare
23https://github.com/scrapy-plugins/scrapy-splash
24https://chromedevtools.github.io/devtools-protocol/
25Opera, Brave or Microsoft Edge
26https://firefox-source-docs.mozilla.org/testing/marionette/Intro.html
27CLI commands for Chrome can be found on https://peter.sh/experiments/chromium-comma

nd-line-switches/.
28https://www.selenium.dev/
29https://www.w3.org/TR/webdriver/
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Figure 2.4: Automation pipeline using Selenium/WebDriver (modified from [Jia21])

with (e) a WebDriver Server, a browser-specific implementation. The server trans-
lates the retrieved commands to (f) browser-integrated API calls. An exception is
Safari, where the driver uses inter-process communication via XPC to communicate
with the browser [Jia21].

Other frameworks in this category vary conceptually from Selenium and each
other. As WebDriver follows a synchronous command and response model, it does
not address parallel requests well [FGS20]. This makes dealing with the event-based
nature of websites more complex. In contrast, CDP uses bi-directional communication
to react seamlessly to events happening in the browser. To give a basic example, a
bot clicking through a site may occasionally trigger an alert.30

This event blocks all interaction on a page until closing the alert. For a Selenium-
based bot, this quickly resolves into an error, as the occurrence of an alert must
specifically be checked. In bi-directional communication, the automation software
can listen to alert events and may react immediately. Selenium’s recent releases,
Selenium 4.0.031 and newer, also integrate a bi-directional API to handle these cases
better. A framework following the bi-directional approach is Puppeteer.32 It is built
upon CDP, which binds it to Chrome-based browsers. Though, browser Mozilla is
also working towards supporting CDP in Firefox [FGS21]. Some frameworks have
taken a different approach to support cross-platform automation. Playwright ships
its own customised browsers [Fel20] to enhance capabilities for Firefox or to simulate
Webkit-based clients33 like Safari. Yet again, Cypress34 takes another approach. It
runs inside the browser’s event loop to gain enhanced control. However, according to
the maintainers [Cyp22], this approach has its limitations and is, by design, unsuitable
for web scraping tasks.

30https://developer.mozilla.org/en-US/docs/Web/API/Window/alert
31https://www.selenium.dev/blog/2021/announcing-selenium-4/
32https://developer.chrome.com/docs/puppeteer/overview/
33https://webkit.org/
34https://www.cypress.io
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2.2.3 Out-of-band controls

Lastly, we consider automation via means outside of web browser developers’ scope.
First, bot operators can alter a browser’s source code to provide new or additional
means of control. As described above, Playwright uses this approach to automate
Firefox browsers. Hence, there may be more automation frameworks in the future that
provide their very own browser builds. Second, automation may happen on higher
levels. To that end, UI automation software or accessibility features can take control of
a browser. Here, the remote control resides in the operation system, not the browser’s
scope. Hence, available libraries may be platform-specific but are independent of the
used browser, as long as they provide a usable interface.

2.3 Ethics of web measurement studies

The research in this thesis contributes to web bot development and web bot defences.
Research in each area can potentially harm others, which merits an ethical discussion
on measures to mitigate potential damage. Discussing such measures works best in the
context of a particular study, wherefore we leave those discussions for the individual
chapters. Instead, this section provides a broader view of ethics on web measurements.
In the remainder of this section, we explore potential damage from deploying bots
and analyse best practices to avoid such damage in this thesis.

2.3.1 Bot-based harm

Ethical frameworks allow us to assess harm and reason about moral decisions. Thel-
wall and Stuart [TS06] proposed a framework that categorises harm by bots for web-
site providers and society. Their framework contains four categories: denial-of-service,
cost, privacy, and copyright. However, nearly two decades have passed, and some as-
pects have gained more relevance. Therefore, we expand these thoughts with two
additional categories: legislation and monetisation. We describe each category in the
text below.

Denial-of-Service. Bots can interact with websites and download documents much
faster than humans do. Moreover, bots are generally cheap to deploy, which allows
running multiple bot instances per machine in parallel. This can become problematic
when careless or opposing bot operators overburden a server, making web services
inaccessible. Although, even performance losses without shutting down a web server
is problematic as soon as other users are affected.

Cost. Visiting a website takes up network traffic and computation power at the
host. This results in costs for the site provider and potential third parties on the
requested page. Thus, the more bots visit a website, the higher the cost for its site
provider and third parties.

Monetisation. Online advertisement is a crucial revenue stream for companies to-
day.35 In contrast to traditional broadcasting media, companies can track users online

35https://www.statista.com/statistics/266206/googles-annual-global-revenue/
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more efficiently and may use this to deliver targeted ads. Bots pose a problem to both
user tracking and advertisers. A bot visit may trigger servers to deliver ads, which are
worthless when shown to a machine. Moreover, defrauding advertisers with bots can
be lucrative for miscreants [Whi16]. Advertisers and analytics firms that do not invest
in countermeasures risk significant financial loss and pollution of their databases.

Privacy. Web bots often target public and freely available data. Nevertheless, the
use of this data can jeopardise an individual’s privacy. A recent example is the case
of Clearview AI, a company that collects images from the Web to offer facial recog-
nition software to law enforcement and the private sector. Although those images
are allegedly publicly available, several courts have found that Clearview AI’s prac-
tice violates privacy laws across the globe. The U.K. [Inf22], Australia [Com21],
Canada [Off21], and multiple countries in the EU [Int21; CNI21; Hel22; GPD22] have
ordered Clearview AI to stop collecting and processing data of their citizens, including
the deletion of already collected data. There have also been financial fines from e250K
in Sweden36to e20M in Greece37and Italy.38In the U.S., the American Civil Liberties
Union (ACLU) reached a settlement with Clearview AI, resulting in a nationwide
restriction for Clearview AI from doing business with the private sector [ACL22].

Copyright. Collecting data from websites (scraping) is the common use case for
bots. Not surprisingly, some bot-operating businesses faced allegations of copyright vi-
olations. However, rulings of copyright infringe depend on the jurisdiction and specific
application. Determining whether certain web scraping activities violate copyright can
be complex and has led to varying outcomes in the past. An applicable law to protect
copyrights in the U.S. is the Digital Millennium Copyright Act (DMCA), which has
been used against scraping companies in multiple law suites [Uni06; Uni13; Uni19].
In the EU, Directive 96/9/EC [Eur96] protects rights holders of original databases
against copying and has also been the subject of scraping-related lawsuits [Cou13;
Cou15; Cou21]. Recently, the EU has started to transform its laws regarding copy-
rights. The adoption of Directive 2019/790 [Eur19] allows text and data mining for
scientific research purposes on such protected databases.

Legislation. Copyright violations are not the only accusation that web bot operator
face. In the U.S., local laws like trespassing and federal laws like the Computer Fraud
and Abuse Act (CFAA) have accompanied lawsuits against bot operations. Especially
in the matter of web bots, courts have construed the CFAA differently within the last
two decades [Sel18]. In a more recent lawsuit, the Ninth Circuit made an indicatory
sentence in favour of bot operators [Uni19]. In this case, the defendant hiQ scraped
public profiles from the social network site LinkedIn. LinkedIn had attempted to stop
hiQ via the CFAA with a cause-and-desist letter. Still, the court granted injunctive
relief to hiQ as it saw its business threatened. It further ordered LinkedIn to shut

36https://edpb.europa.eu/news/national-news/2021/swedish-dpa-police-unlawfully-use

d-facial-recognition-app_en
37https://edpb.europa.eu/news/national-news/2022/hellenic-dpa-fines-clearview-a

i-20-million-euros_en
38https://edpb.europa.eu/news/national-news/2022/facial-recognition-italian-sa-fines

-clearview-ai-eur-20-million_en
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down installed countermeasures that hindered hiQ from harvesting public profiles
from LinkedIn. The court also ruled that the CFAA does not apply and that public
interest favours hiQ. However, it remains to be seen whether upcoming lawsuits or
new laws will change this perspective further. For the time being, some web bot
operations will continue to exist in a grey zone until challenged in court.

In contrast, the European Union is currently changing its legislation due to a
switch in strategy that aims to renew regularisation concerning the digital world.
Within this process, various laws will or have recently emerged: the Directive of secu-
rity of network and information systems,39 the EU AI Act,40 the Digital Services Act
and the Digital Markets Act,41 the European Data Governance Act42 and Data Act,43

the Regulation on electronic identification and trust services,44 and the Regulation
on ePrivacy.45

The future will show whether these changes can significantly affect web bot oper-
ations.

2.3.2 Mitigating damage

Since web bots potentially cause damage to web users and site providers, the question
arises to what extent automated measurements can avoid such damage. To answer
this question, we explore best practices for mitigating damage and discuss them in
the context of web measurements.

Indeed, there has been an early recognition of the potential damage that bots can
cause. In 1993, Koster and others [Kos93] published a list of suggestions for how
to be accountable and deploy bots cautiously under the title “Guidelines for Robot
Writers”. However, some website providers may prefer to define more permissive or
restrictive rules depending on the bot or context. Hence, it is beneficial for both bots
and sites when website providers can express rules individually. The Robots Exclusion
Protocol (REP) [Kos94] describes such an approach and is currently in the process of
standardisation [KIZ+22]. Due to the REP, a website can express what paths a bot
must avoid by simply providing a robots.txt file46 for download.

The REP relies on compliance, i.e., it requires the goodwill of bot operators. The
same applies to ethical guidelines, however, they may cover aspects that REP does
not, such as accountability. Many such guidelines proposed by organisations and
practitioners exist, but there is no consent among them. The literature review in
Table 2.2 lists a summary of various guidelines concerning the ethical deployment
of web bots. While rules in the analysed guidelines partially overlap, they also show
contradictions. Especially when it comes to hiding bots, some provoke ways to conceal
a bot or a bot operator’s identity (cf., source 10 and 11 in Table 2.2). At the same
time, others consider hiding as unethical in general (see source 6 in Table 2.2).

39https://digital-strategy.ec.europa.eu/en/policies/nis-directive
40https://artificialintelligenceact.eu/
41https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
42https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
43https://digital-strategy.ec.europa.eu/en/library/data-act-proposal-regulation-har

monised-rules-fair-access-and-use-data
44https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
45https://digital-strategy.ec.europa.eu/en/policies/eprivacy-regulation
46By convention this file is located under protocol:{domain name.tld}/robots.txt
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Table 2.2: Literature review of guidelines for ethical crawling

Guideline By Description

co
m
p
ly
in
g

Share results 1 Make results accessible.
Limit selection 1,3,4,7,11 Narrow data collection to content that is needed.
Stay alert 1,7,8 Bots may break or produce insufficient results.
Account for errors 1,2,5 React on HTTP status codes, such as 403 (Forbidden)

or 429 (Too many requests).
Reduce load 1,2,5 Test locally, avoid re-visits, and use caching.
Protect data 4 Deploy protection measure for statistics, personally

identifiable information, etc.
Deploy responsible 1,2,3,4,5,6,

7,8,9,10
Throttle request rate to not influence others and avoid
deployment during peak hours.

Evaluate necessity 1,3,4,6,7 Visiting a targeted is not always needed, e.g., data from
the Internet archive or Google cache may be sufficient.

co
n
fl
ic
ti
n
g

Publish raw data 1 Make data public to avoid re-visits from others.
Be available 1,4,7 Site owners may seek contact to a bot operator.
Respect site rules 2,3,4,5,6,

8,9,10,11
Follow directions from a site’s robots.txt, terms of use
and avoid nofollow links.

Be identifiable 1,3,4,5,6,
7,9,10

In the HTTP header, provide a unique value for the
“User-Agent” field and a contact email address in the
“from” field.

Ask for permission 1,3,4,6,9 Contact the site owner and make your intentions clear.
Deploy bots after approval. Provide information about
automated activities on a website.

Use APIs 3,9,10 An API allows the site owner to enforce rules, while
bots act with permission.

Pay back 3,7 Give credit to data source and link back to it.

1. Koster [Kos93]
2. https://dev.to/miguelmj/how-to-make-an-ethical-crawler-in-python-4o1g

3. https://www.empiricaldata.org/dataladyblog/a-guide-to-ethical-web-scraping

4. https://ec.europa.eu/eurostat/cros/content/WPC_ESSnet_Webscraping_policy_draft_en

5. https://www.cis.uni-muenchen.de/~yeong/Kurse/ss09/WebDataMining/kap8_rev.pdf and
6. https://medium.com/codex/guide-to-ethical-web-crawling-8b573cdfafdc

7. https://towardsdatascience.com/ethics-in-web-scraping-b96b18136f01

8. https://www.smashingmagazine.com/2021/03/ethical-scraping-dynamic-websites-nodejs-puppeteer/

9. https://soshace.com/responsible-web-scraping-gathering-data-ethically-and-legally/

10. https://finddatalab.com/ethicalscraping

11. https://dev.to/digitallyrajat/the-ultimate-guide-to-legal-and-ethical-web-scraping-in-2022-4c11

Interestingly, around half of these guidelines may be impractical for researchers due
to common conditions of web studies. The section marked as conflicting in Table 2.2
highlights rules that commonly conflict with the requirements of web measurements.
A delicate matter can be any requirement that makes a bot identifiable, as it can
undermine the reliability of a study. Similarly, asking a site for permission could
change the behaviour of the observed site, which can invalidate measurement results.
Another matter is the usage of an API. These may offer an insufficient resolution
(often enforced through request limits) or can lead to deviating results from a web
user perspective. We further see that some guidelines are challenging to follow when
scale is required, such as respecting the terms of use and asking for permission. In
addition, researchers may not share collected raw data to protect study subjects or
to avoid copyright violations. Finally, a study may have individual requirements that
require further consideration of violating some of these rules, e.g., the bot operator
must decide whether a site that restricts any access by bots within its robots.txt file is
in the scope of its research. In general, guidelines should be carefully revisited under
the specific requirements of a study. To put this discussion into the context of this
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work, we can infer some generic rules, which we followed during the conduction of the
research in this thesis.

Assessing risks and selecting preventive measures. It is crucial to determine
the risk of a project to mitigate harm. The Open University offers two types to
discuss ethical concerns in research projects: the formal Commissie Ethische Toetsing
Onderzoek (cETO) and, independent from it, the Ethical Advisory Board (EAB),
which is specific for the computer science department at the Open University. The
latter provides advice with a fast turnaround time. In general, we sought advice from
the EAB to discuss our research proposal and contacted the cETO if recommended
by the EAB.

Responsible deployment. In general, we follow the rules listed under complying
in Table 2.2. These reduce adverse effects related to cost, denial-of-service and mon-
etisation. To the best of our knowledge, deploying bots, as done in this thesis, does
not violate EU laws and follows the current practice in research at the time of writing.

Handling of sensitive research. Despite bot deployment, we see two areas of
sensitive research that could require precautionary measures: involvement of human
subjects and vulnerability research. The involvement of human subjects and the
collection of personally identifiable information (PII) in this thesis is too little (see
Section 8.1 for more details) as it would affect individuals. Nevertheless, our research
may reveal vulnerabilities, wherefore we take precautionary matters. First, we do
not perform any attacks on systems used in production. Instead, we collect data
and conduct tests in a lab environment. Second, we report all found vulnerabilities
under the guidelines for responsible disclosure as stated by the Open Web Application
Security Project (OWASP) foundation [Tea21].
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Related Work

A related work section may serve two purposes: first, giving an overview of previous
and current advances that relate to the research conducted in the present work, and
second, contextualising the own achievements with the state-of-the-art. This chapter
covers the former, while the latter will be explained in individual chapters. In the
remainder of this chapter, we discuss research that has studied the automation of
logging in on websites and platform-depended pricing in online markets (Section 3.1).
Then we report on studies that have investigated bot detection techniques, their
proliferation, and their impact on bots and measurements (Section 3.2).

3.1 Increasing measurement coverage

The first part of this thesis covers two areas of data acquisition for web measurements.
First, we address automatic logging in to improve the scale of previous measurement
studies. Logging in is a requirement to assess session security thoroughly. After a
successful login, it may be possible to access the tokens used to identify an authenti-
cated session and unlock website areas that should only be available to authenticated
users. Studies that do not log in may miss such important details. Second, websites
show dynamic behaviour and underlie frequent changes. They collect data about their
visitors and provide a tailored response. Measuring such differences between individ-
uals or platforms is a vivid research field. Thus, this part reports on research that
measures such differences, focusing on online markets, platform-specific differences,
or both.

3.1.1 Automating logging in

Automating logging in has been an attractive endeavour for researchers, but the
capabilities of such systems have been limited for a long time. For example, multiple
studies proposed solutions to secure session cookies [dRND+12; NMY+11; BCF+14;
TDK11]. However, lacking the ability to log in automatically, none of these studies
could test their solutions on authentication cookies. They all evaluated their solutions
against cookies set prior to logging in. Tang et al. [TDK11] explicitly shy away from
automated logging in and even see it as infeasible. Where previous studies needed
to log in, they typically relied on manual intervention. While this approach enables
studies to log in, manual intervention scales poorly and is an obstacle to repeatability.
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Mundada et al. [MFK16] approached automation after logging in. They use man-
ual logins to automatically analyse the security of the login process of 149 sites with a
browser extension. They found several security risks in well-known sites such as Ya-
hoo. However, their approach is only repeatable with their volunteer corps. Various
steps towards more automated approaches to logging in have been made. Both the
study by Van Acker et al. [vAHS17] and the work of Ghasemisharif et al. [GRC+18]
needed to identify the login area. Van Acker et al. studied the security of the lo-
gin area, while Ghasemisharif et al. counted the prevalence of single sign-on (SSO)
providers. Both studies automated the identification of login areas using similar
methods. Van Acker et al. evaluated the Alexa Top 100K and found 32K login pages
vulnerable to man-in-the-middle attacks. Ghasemisharif et al. evaluate the Alexa
Top 1M and found 58K websites offering SSO login.

To the best of our knowledge, only three studies before our development of Shep-
herd achieved some success in automatically logging in on websites. Calzavara et
al. [CTB+14] used a crawler that submits credentials by taking an URL and a pair
of username and password. The crawler then searches for login pages and assesses if
the login was successful based on the presence of the username or the absence of login
forms. This gave them access to 70 websites and the largest data set of authentication
cookies at that time. They expanded this data set to 215 websites in an extended
version of their previous work [CTC+15]. The two other studies used Facebook as
an SSO provider to log in on websites. Robinson and Bonneau [RB14] manually per-
formed the step of finding login pages. For their study, they collected sites that offer
Facebook Connect and automatically logged in on them by using Facebook creden-
tials. They focused on what permissions a visited site obtains to the user’s Facebook
profile. As such, they did not check whether the login was successful, nor did they
evaluate aspects of the visited site. In contrast, Zhou and Evans [ZE14] designed an
approach to automatically log into websites with Facebook and scan for SSO-related
implementation flaws. Their scanner automates the search for Facebook login but-
tons, the submission of credentials, the eventual filling of registration forms, and the
evaluation of whether a login was successful on English-speaking sites. On the U.S.
Top 20K, they found 1,660 sites providing Facebook login, which they investigated.
For the Top 10K, the authors report an 80% success rate of their method.

After Shepherd, Drakonakis et al. [DIP20] leveraged automatic account creation
via SSO or domain-specific accounts. Automatic account creation allows targeting
any site but requires significantly more scanning effort. On 1.6M scanned websites,
they ended up with 25K sites where they reached post-login areas.

3.1.2 Mobile Web ̸= regular Web?

A most pertinent question is whether or not actual devices are needed for data ac-
quisition. Several studies investigated differences between mobile and desktop sites,
typically based on faking/emulation. Das et al. [DAB+18] investigated access to
sensors on mobile devices via JavaScript. They modified OpenWPM [EN16], a web
measurement tool based on the Firefox desktop browser, to resemble a mobile browser.
Their findings show that most third-party scripts in the context of advertising or bot
detection use mobile sensors. Goethem et al. [vGPJ19] took a similar approach when
measuring differences in the deployment of security measures between desktop sites
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and their mobile variants. To gain access to mobile sites, Goethem et al. modified a
headless Chrome browser to fake the characteristics of a mobile device. Their study
showed little difference between both variants in the deployed security measures. They
do not report whether they validated the accuracy of their modified Chrome browser
compared to sites delivered to real devices.

In contrast to these two studies, Yang and Yue [YY20] used genuine mobile
browsers and modified OpenWPM to run on a mobile Firefox on real smartphones.
They found that measures to disguise desktop browsers as mobile browsers can be
ineffective in triggering the delivery of mobile websites. Their results also show a
significant difference in the number of trackers between mobile and desktop sites.

3.1.3 Price differentiation

Multiple studies have examined whether web analytics is used to determine prices in
online shops. In 2012, Mikians et al. [MGE+12] found that the user’s geolocation,
origin, and trained personas can influence prices in some e-commerce markets. Price
studies typically require a dedicated scraper per vendor, limiting their coverage. To
achieve vendor-site agnosticism, Mikians et al. developed $heriff [MGE+13], a browser
extension to crowd-source price information. Later, Iordanou et al. [ISS+17] expanded
this work to enable peer-to-peer price comparisons. Their method identified that 76
out of 1,994 services conduct location-based price discrimination.

Hupperich et al. [HTW+18] investigated what features of a device’s fingerprint
are most influential for prices. They use a desktop browser and modify the user-
Agent value to emulate browsers. They found that the browser properties naviga-
tor.userAgent and navigator.vendor affect prices the most.

Hannak et al. [HSL+14] get real users involved via Amazon’s Mechanical Turk. In
addition, they investigated mobile browser platforms by deploying headless browsers
with a manipulated user-agent string. Their experiments show signs of price dis-
crimination and search steering targeting mobile browser users in two cases. Finally,
Vissers et al. [VNB+14] conducted automated measurements to investigate whether
price differences exist on airline websites. Their study used various user profiles and
physical locations, but did not reveal structural price differences.

3.1.4 Online pricing algorithms

Previous studies have empirically investigated online pricing algorithms. Chen et
al. [CMW15] studied swelling prices on Uber, which provided insights into the en-
durance and frequency of such swells, and used algorithms. To acquire the data
for their study, they mimicked HTTP interaction by a mobile app to communicate
with the backend, bypassing the need to scrape the app. In another study, Chen
et al. [CMW16] attempt to reconstruct pricing algorithms by third-party sellers on
Amazon. They fall back to using web scraping for the data acquisition, as the API
provided by Amazon enforces restrictive rate limiting. Their findings show the us-
age of pricing algorithms in some cases and high price volatility. In contrast, Gibbs
et al. [GGG+18] used data from analytics companies to study pricing algorithms on
Airbnb. However, they found only limited use of dynamic pricing in this market.
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3.2 Advancing attacks and defences

A website can deploy preventive measures against web bots or use bot detection
followed by countermeasures, such as rate limiting or blocking.

Under preventive measuress, we understand methods that make it harder for bots
to conduct certain activities at scale without detecting a bot. They typically rely on
randomisation (e.g., mutating page elements, JavaScript, or CSS [VYG13; WZX+16])
or challenges that ought to be easy to solve by humans but not by machines, so-called
captchas1 [vABH+03]. captchas may prevent bots from accessing certain content
or functionality; however, even humans can struggle solving them [BBF+10]. Hence,
overusing captchas results in a lousy user experience. Captcha-solving services
further limit their effectiveness. These offer real-time solving either via human labour
or automated routines. Counterintuitively, services relying on human work provide
affordable prices, while the development of automatic captcha solvers offers only a
low return on investment [MLK+10]. Contemporary captcha providers integrate
bot detection routines [GVM+22] to determine the risk level per visitor. Based on
the assigned risk, they can serve CAPTCHAs with varying puzzle strengths [SPK16c].

Bot detection itself can be separated into two classes: generic detection (e.g., based
on site traversal [SD09; BLR+10], session data [XLC+18], mouse movement [CGK+13],
etc.) and specific detection, which recognises distinctive aspects of one or more known
web bot frameworks. Thus, specific bot frameworks may be detected due to their fin-
gerprint (specific detectors) or interaction characteristics (generic detectors). The
latter requires identifying distinctive behavioural traits in a bot’s interaction with a
site. We discuss advances in both fields further below.

3.2.1 Specific detection

Specific bot detection relies on browser fingerprinting. The field of browser finger-
printing evolved from Eckersley’s study [Eck10] into using browser properties to re-
identify a browser. He was able to reliably identify browsers using a only few browser
properties. Since then, it has been studied extensively in the context of user track-
ing, as summarised in [LBB+20]. Using browser fingerprinting to identify specific
client components (such as automation frameworks) has recently gained more atten-
tion. Shekyan [She15b] conducted manual investigations of PhantomJS to pin down
identifiable properties. Likewise, Vastel [Vas17; Vas18; Vas19] manually investigated
inconsistencies to detect Chrome in headless mode. Burzstein et al. [BMP+16] used
canvas fingerprinting to distinguish between real and emulated devices. Hence, cus-
tom headless browsers imitating consumer browsers, such as PhantomJS or HTM-
LUnit, are prone to this type of fingerprint-based detection. In contrast, Schwarz
et al. [SLG19] applied a new form of fingerprinting, JavaScript template attacks, to
perform client-side vulnerability scanning. For creating the template, they traverse
the object hierarchy and store the characteristics of each object. Later on, templates
can be compared to determine the difference.

Various authors have suggested methods to spoof properties in JavaScript in re-
sponse to fingerprinting. Spoofing techniques to defeat browser fingerprinting are
performed directly in JavaScript [FZW15; TJM15] or on the browser level [NJL15;

1Completely Automated Public Turing test to tell Computers and Humans Apart
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LBM17]. Similarly, spoofing allows camouflaging bots or emulating different device
classes (e.g., mobile browsers [DAB+18]). The puppeteer stealth plugin2

is an open-source project to hide identifying properties in puppeteer-controlled
Chrome browsers. Jueckstock et al. [JSS+21] used this plugin to test a lesser de-
tectable Chrome browser against an easy-to-detect headless variant of Chrome. Also,
Vastel et al. [VRR+20] experimented with spoofing in headless and vanilla Chrome
to challenge bot detectors in the wild. They found that these scripts rarely detect
vanilla Chrome. Finally, Cassel et al. [CLB+22] and Kuchhal et al. [KL21] created
self-made automation components to avoid detection via known properties in automa-
tion frameworks.

3.2.2 Generic detection

There has been a vast number of studies that explored site traversal and session data
for bot detection. While these approaches achieved satisfying results within their
experimental boundaries, it is unclear which approach works sufficiently well in prac-
tice [DG11]. Another research direction in this area is detection based on interaction.
Various approaches use interaction as a means to re-identify individuals. In particular,
researchers have commonly used interaction as a complement to passwords. Therefore,
these studies focus primarily on typing rhythms as a secondary authenticator [RSJ20].
This idea was also adapted to mobile phones. Giuffrida et al. [GMC+14] used touch
events and enhanced this with data from smartphone sensors (e.g., accelerometer and
orientation sensor). In contrast, studies have also examined automating interaction
to perform credential stuffing or brute force attacks. Such works challenge the secu-
rity of interaction detection systems by imitating human interaction with bots. For
example, the study by Serwadda and Phoha [SP13] demonstrates such an attack by
using a large-scale data set containing keystrokes from real users to simulate human
typing. Similarly, Serwadda et al. [SPW+16] brought this attack to mobile phones by
leveraging a robotic arm to mimic gestures.

Bots are used in other circumstances to circumvent expectations. This is par-
ticularly egregious in online games (e.g., aim bots) and online discussion fora (e.g.,
spam bots). The academic community has investigated these aspects at great length.
For example, Barik et al. [BHR+12] used mouse button presses and release events
to detect automated clients in web browser games. Gianvecchio et al. [GWX+09]
used the limited variety of player interaction to identify bots in the context of an
MMO. Park et al. [PPL+06] assumed that bot interaction on websites is inconsistent.
Hence, they proposed bot detecting based on missing actions (e.g., the lack of mouse
movement when performing a click). Chu et al. [CGK+13] used keystroke dynamics
and mouse movement to identify spam bots on blogs. Detection of such bots is also
a hot topic outside academia. As such bots cause significant annoyance for users and
maintainers/moderators, a plethora of tools, blog posts, and other non-peer-reviewed
discussions exist that attempt to identify such bots. On the other hand, such bots
can offer significant benefits to their users, who actively discuss ways to introduce
more realistic interaction into them.

2https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
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3.2.3 Measuring bot detectors in the wild

Measuring the Web for bot detection provides insights about the state-of-the-art.
Besides our work (see Chapter 7 and 9), only a few studies have conducted such mea-
surements. Das et al. [DAB+18] studied access to mobile sensor APIs in browsers and
found that scripts belonging to bot detectors make use of them. Vastel et al. [VRR+20]
counted bot detectors by detecting incidences of blocking. Their study shows a rate
of 2.9% of sites within the Alexa Top 10K with detectors that block a detected bot.
Azad et al. [ASL+20] evaluated whether third-party bot detectors prevent websites
from automated attacks (account takeover, brute forcing and automatic scraping). As
they needed a seed list of sites protected by detectors, they created code signatures
of bot detection services and looked for these signatures via search engines. Another
study by Jueckstock and Kapravelos [JK19] contains a large-scale investigation of
the existence of unknown fingerprint-based bot detectors. They presented an exper-
iment using dynamic script collection and dynamic analysis. For that, they created
VisibleV8 (or just VV8), a modified version of Chrome’s V8 JavaScript engine to
record JavaScript calls. Their instrumentation allows recording attempts to access
non-existing properties in the DOM without exposing such properties to page scripts.

3.2.4 Are web bots served the same content as humans?

Websites may return a different page to a web bot than a regular visitor would receive.
This practice is commonly referred to as cloaking. Cloaking techniques fall into the
category of dual-use technology. For example, malicious actors use cloaking for tar-
geted attacks, such as search engine manipulation [WD05; WD06; WSV11; ITK+16]
or to protect phishing websites from web security scanners [OSD+19; OZW+20;
ZOC+21]. On the other hand, websites may adjust their behaviour to reduce costs
or to shield themselves against automated attacks. For example, Englehardt and
Narayanan [EN16] noticed that websites serve fewer ads to PhantomJS. Moreover,
they found that they would get more ads if they changed the UserAgent string to
that of a regular user browser (Firefox). As this raises concerns regarding the reli-
ability of measurement tools, researchers have investigated measurement deviations
between different bots and between humans and bots.

Ahmad et al. [ADZ+20] contrasted response differences between three classes of
web bots (HTTP engine tools, headless browsers, and automated browsers). They
found that while HTTP engine tools miss many resources, they more often pass bot
detection than the other two classes. Pham et al. [PSF16] focused on deviations orig-
inating in the UserAgent string. By alternating the UserAgent string of an HTTP
engine, they observed that strings referring to web bots resulted in significantly more
(about 4×) HTTP error codes than strings of regular browsers. Interestingly, User-
Agent strings of a relatively unknown web bot framework worked better than an
empty string. They even outperformed the strings of regular browsers. Jueckstock et
al. [JSS+21] studied differences for headless Chrome and IP origins, such as univer-
sities, cloud and residential IPs. Their study shows significant differences in website
responses between a headless browser and a less detectable, scripted Chrome browser.

In contrast, Zeber et al. [ZBO+20] compared data from human users with Open-
WPM clients. In their study, OpenWPM clients encountered three times more
tracking domains and had more interaction with third-party domains than human-
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controlled browsers. Cassel et al. [CLB+22] investigated the reliability of emulated
browsers. To avoid bot detection, they created their own browser remote control.
Interestingly, their observations show the opposite of Zeber et al.’s findings. They
observed 84% less third-party traffic for a Selenium-driven vs a non-Selenium-driven
Firefox browser. This contradiction shows that there is yet no consistent picture of
the influence of bot detection on measurements.
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Chapter 4

Overcoming the Login Barrier

To gauge adoption of web security measures, large-scale testing of web-
site security is needed. However, the diversity of modern websites makes a
structured approach to testing a daunting task. This is especially a problem
with respect to logging in: there are many subtle deviations in the flow of
the login process between websites. Current efforts investigating login se-
curity typically are semi-automated, requiring manual intervention which
does not scale well. Hence, comprehensive studies of post-login areas have
not been possible yet.
In this chapter, we introduce Shepherd, a generic framework for logging in
on websites. Given credentials, it provides a fully automated attempt at
logging in. We discuss various design challenges related to automatically
identifying login areas, validating correct logins, and detecting incorrect
credentials. The tool collects data on successes and failures for each of
these. We evaluate Shepherd’s capabilities to login on thousands of sites,
using unreliable, legitimately crowd-sourced credentials for a random se-
lection from the Alexa Top websites list. Notwithstanding parked domains,
invalid credentials, etc., Shepherd was able to automatically log in on 7,113
sites from this set, an order of magnitude beyond previous efforts at au-
tomating login.

This chapter is based on the following publication:

Shepherd: a Generic Approach to Automating Website Login. Hugo
Jonker, Stefan Karsch, Benjamin Krumnow, and Marc Sleegers. In Proc.
2nd NDSS Workshop on Measurements, Attacks, and Defenses for the
Web (MADWEB’20), DOI: 10.14722/madweb.2020.23008, 2020, [MAD-
Web20].
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4.1 – Introduction

4.1 Introduction

Security of online services must be regularly tested. This is not only needed to
improve security of specific services, but also to gauge the state of adoption of security
measures. For websites, an interesting paradox presents itself: a major security aspect
is the login process, with further security aspects of interest accessible only to logged-
in users. However, the login process may vary from website to website. Thus logging
in automatically across a wide variety of sites is a daunting challenge – one we address
in this chapter.

Websites offer users the option to login, typically for one of two reasons: to access
protected resources (such as a personal mailbox), or to participate in the website’s
community under a specific identity. In either case, security of the authentication
process is of fundamental importance. Websites should ensure that an unauthorised
attacker cannot steal or overtake the login (session hijacking). However, websites are
often vulnerable to simple session hijacking attacks.

For example, in 2010, the Firesheep browser plugin for Firefox [But10] trivialised
one class of (already known) session hijacking attacks. While this one attack can
easily be prevented, authentication cookies can still be stolen or leaked in a number
of other ways. Nowadays, several simple mitigation measures exist which can be used
to prevent a whole range of simple attacks against authentication. These include
cookie flags that restrict when a browser sends a cookie, HTTP headers that enforce
secure communications for all subsequent visits, etc. Sites that lack these measures are
vulnerable to simple session hijacking, while sites that do have them will offer a base
line of security. Manually assessing the security of a specific site is straightforward.
Indeed, due to manual verification, we know that the sites affected by Firesheep shored
up their defences. However, applying this process to all websites does not scale and
is thus typically not performed. Case in point: we do not even know how many other
sites are still open to the Firesheep attack – or simple variations thereof.

A similar open question concerns the uptake of modern security measures. For
example, we do not know how many sites lack basic security measures (proper cookie
flags and HTTP headers) for logged in users. Other open questions concern adoption
of security and privacy-enhancing measures beyond those affecting session security, for
which logging in is a prerequisite. To study such questions requires two ingredients:

1. a set of valid credentials,

2. successfully submitting those credentials.

While several efforts have investigated specific security aspects on a handful of
sites, to date, most studies that evaluated the security of the authentication pro-
cess relied on a combination of automation and manual labour or (like Firesheep)
tailored their measurement to specific websites (see Section 3.1.1). Typically, the
manual aspect focused on actually logging in. This presents a barrier to scaling up
these investigations and addressing the aforementioned questions. To the best of
our knowledge, the largest manual study to date that successfully reaches post-login
stages used manual logins to evaluate 149 sites. Initial attempts at automating the
login process relied on single sign-on (SSO) credentials (such as Facebook login) and
reported success on 912 websites.
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Contributions. The goal of our work is to study the feasibility of large-scale post-
login studies without tailoring the automation to a specific login flow. To that end,
we make the following contributions.

• We present Shepherd, a framework for automatically logging in on websites and
executing a scan.

• We identify challenges in identifying login areas, on validating correct logins,
detecting invalid credentials, and provide approaches to handling each of these.

• We perform a scan to illustrate Shepherd’s potential.
Using credentials gathered from a legitimate, crowd-sourced effort, we success-
fully login on 7,113 websites. The case study shows Shepherd is able to study a
number of sites an order of magnitude beyond any previous study.

Outline. In the following, we discuss Shepherd’s routines to automatically log in
on websites (Section 4.2) and shine a light on some implementation details (Sec-
tion 4.3). Then, we review approaches for creating a data set with credentials and
use one to evaluate Shepherd’s performance (Section 4.4). Next, we validate our mea-
surement (Section 4.5) and compare Shepherd’s performance with previous studies
(Section 4.6). Before concluding this chapter (Section 4.9), we report on possible use
cases for Shepherd (Section 4.7) and present extensions to broaden Shepherd’s scope
(Section 4.8).

Ethical considerations. For our study, we aim to achieve an unprecedented scale
in entering restricted areas of websites. As this led to concerns, we sought and re-
ceived approval from our EAB. Nevertheless, we wish to highlight the various ethical
concerns.

The primary concern was acquiring a large set of credentials from a legitimate
source. Fortunately, the BugMeNot database – the data source we use in our study
– is exactly this: a large set of login credentials with strict (and enforced) policies to
ban a site from inclusion upon request of the site owner.

Secondly, the experiments must not exceed their mandate and break things. Hence,
we design Shepherd to interact with websites in the same fashion as humans do: to
trigger elements human clicks are simulated, timeouts are used between each action,
sites are not crawled in parallel, only visible elements are considered for interacting
with a site. Therefore, the risk of overburden or accidentally confusing the websites
logic is reduced. We worked on this by testing Shepherd on a small number of do-
mains and resolving any issues. The results are not 100% perfect, but the fraction of
mistakenly pressed buttons we detected is very small.

Availability. The tools created can easily be misused, e.g., to apply credential
stuffing or password guessing attacks. Therefore, we cannot and will not publicly
release Shepherd. On the other hand, we welcome interest from fellow researchers.
Thus, we make Shepherd available for follow-up studies by other bona fide researchers
upon request. We list criteria that we use to evaluate requests on our project site.1

1https://bkrumnow.github.io/shepherd/
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Figure 4.1: Steps of the login process after connecting to a target site

4.2 Automating logging in

Logging in is basically a sequential process, consisting of a number of steps (see
Figure 4.1). To log in on a website automatically, Shepherd conducts four steps:

1. identify the login starting point,

2. submit credentials,

3. check response to login attempt,

4. verify whether login was successful.

In addition to these steps, Shepherd also detects and keeps track of certain errors. This
is because Shepherd uses a generic approach, which is not tailored to any specific login
process. As such, it may make mistakes (login field not found) or encounter errors
from external sources (site unreachable, captcha, invalid credentials). In effect, the
process acts like a funnel, with each step acting as an imperfect filter. To gauge the
accuracy of the filters themselves, Shepherd includes routines to detect a variety of
errors.

In the rest of this section, we discuss steps and error detection in more detail.

4.2.1 Identifying the login starting point

First, the login starting point of the target website must be found. Zhou and Evans
[ZE14] approached this by relying on click events on release to trigger SSO login
dialogues. In contrast, domain-specific logins may also be found by visiting URLs.
From previous studies [CTC+15; vAHS17; GRC+18] five search strategies emerge:
scanning the landing page, visiting URLs filter by login keywords, querying search
engines, try standard URLs, and scanning clickable DOM elements. We found that
combining multiple search engines can lead to a better coverage, thus we expanded
the approach by Van Acker et al. [vAHS17] on this point.

Unfortunately, none of these studies provide insight in the efficiency nor reasoning
about the order of these methods. To test the success of each method for finding login
elements, we applied each to a random sample of 5,000 sites from the Alexa Top 1M
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Table 4.1: Performance overview of methods to locate a login page of a website

method success average time
(n=5,000) (in sec)

1. landing page 225 7.17
2. URLs with login terms (depth 1) 1,119 10.86
3. clickable elements 1,149 18.84
4. standard URLs 1,366 18.79
5. search engines 1,948 50.08

- startpage.com 1,378 32.66
- bing.com 342 9.17
- ask.com 1,216 18.04

All combined 2,759 36.43

(see Table 4.1). We found that landing pages rarely contain login elements. However,
all other methods rely on the actual domain of the site (after any redirects). Therefore,
the method of scanning the landing page should be executed first. Furthermore, some
methods are more successful in finding login pages than others. Interestingly, the
results of the various methods are sufficiently disjoint that combining them leads to
the highest success rate.

Based on the evaluation, we arrived at the following order to search for login
elements:

1. Landing page,

2. URLs with login-based terms found on the landing page,

3. Clickable elements with login-based terms,

4. Standard URLs2,

5. Search engines,

6. URLs with login-based terms found on pages from step 2.

The order of these methods is important. Shepherd looks for login elements on the
landing page first, since that page needed to be loaded anyway. Only when method
2 and 3 fail, Shepherd uses more generic methods. We gave standard URLs a lower
priority, as these can lead to admin login pages. Shepherd only uses search engines
if prior methods fail to reduce the risk of blocking and reliance on external parties.
Finally, if none of these methods work, Shepherd scans each of the pages found in
step 2 for URLs with login-related terms and visits these. For search terms, Shepherd
contains a dictionary with multiple translations for keywords from native speakers
and Google translations.

Once a method claims success, Shepherd stops searching for the login. If none of
the search method worked, Shepherd finishes the scanning process and marks that a
login page could not be found.

When Shepherd encounters a visible input element of type password which is not
part of a registration form, it assigns the status login found. A form is considered

2Specifically: http(s)://base url/login, http(s)://base url/account and http(s)://base url/signin.
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a registration form if it contains more than 3 visible input elements (including the
found password field).

4.2.2 Submitting credentials to login

Once the login element has been found, the credentials must be submitted. There are
two common types of logins:

• one-step: where username and password can be supplied simultaneously; and

• two-step: first request the username, and only after the username has been
submitted is the password entry field shown.

By combining logging in with scanning for login areas, we are able to cover both
types. To the best of our knowledge, submitting credentials for two-step login has
not been explored in previous work.

If fully submitting the credentials (in either one-step or two-step fashion) causes
the password input element to disappear, the website status is set to submitted. This
status indicates that the site responded to the input, but does not claim that login
was successful. Websites can also stop showing password fields in other cases, such
as when the user is blocked or an error results in a 404 page. To separate such cases
from actual logins, the submission process is followed by a verification process.

Shepherd can use multiple credentials per domain (there is also limited support
for Facebook SSO credentials, as described in Section 4.8.1). If it is not successful
with the first set of credentials (i.e., the password field remains), Shepherd will try
logging in anew with the next set of credentials. In case all available credentials for
a specific domain fail, the website is assigned the status logging in failed, after trying
all credentials.

Finally, in some login forms, the username is an email address. If the input
element is of type “email”, Shepherd avoids submitting strings that are not valid email
addresses. For cases where Shepherd can ensure that an email address is required to
log in, given credentials without an email address will be ignored.

4.2.3 Checking the response to a login attempt

Shepherd checks the website response after submitting credentials in order to perform
some error detection. For example, many websites signal a failed login attempt with
a message like “username or password invalid.” Shepherd detects such messages and
marks the credentials as invalid. More specifically, Shepherd assesses a website’s lan-
guage and searches for visible strings containing sets of keywords, such as “invalid”
and “username” or “password”. Only if these terms appear combined in a single
string, Shepherd marks the credentials as invalid. In practical tests, failure messages
occasionally appeared in English on non-English sites. Thus, Shepherd scans for key-
words concerning invalid credentials in English and the site’s used language. Besides
invalid credentials, Shepherd also detects captchas and blocking messages to recog-
nise countermeasures against automated visitors. To do so, Shepherd scans visible
elements for blocking or captcha related keywords in multiple languages, and checks
the HTML source for code fragments pertaining to captchas. The code fragments
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Shepherd detects are derived from the HTML code fragments used to invoke one of
five captcha libraries (including ReCaptcha).

4.2.4 Verifying login status

After detecting that the website reacted to the submission of credentials, Shep-
herd evaluates whether logging in was successful. For this, we use previous ap-
proaches [CTC+15; ZE14; MFK16] with a few differences. In previous studies, trusted
credentials or manual logins were used. In this work, we assume credentials to be un-
reliable. Moreover, we also do not assume that the occurrence of a string that matches
the username on a page is sufficient to verify login – strings occurring in usernames
may also occur on the page due to other reasons.

To verify a login, Shepherd runs a verification method twice: once on the poten-
tially logged-in site, and once without cookies. Login is only successfully verified if
the first check succeeds and the second fails.

Shepherd has three verification methods used for this:

1. detect a logout button or user identifier on the page received following submis-
sion of credentials,

2. detect a logout button or user identifier on the landing page,

3. attempt to re-open the login area.3

A login is only claimed to be verified if at least one of these verification methods is
successful when visiting the site with cookies, and fails when visiting the site without
cookies.

4.2.5 Perform post-login scan

Following a successful verification of logged-in status, Shepherd will execute any scans.
The process to hook in custom routines is described in Section 4.3.4.

4.3 Implementation

Shepherd uses Chrome as a designated browser, and runs on Linux and on macOS
systems. The instrumentation is achieved through usage of Selenium.

4.3.1 Base HTTP platform

There are several possible platforms on which to build Shepherd. Not all are suitable.
HTTP engine interfaces lack engines to interpret JavaScript and construct DOMs,
which is necessary for websites with dynamic content. More advanced tools, such as
custom browsers (e.g., Nightmare) or headless browsers, are an improvement on this
but nevertheless still lack some of the functionality of full web browsers (e.g., plugins).
This poses two problems: firstly, they do not necessarily provide a faithful rendition
of what a regular user would experience (cf., [EN16]); secondly, such deviations can

3In well-designed sites, this should not be possible for logged-in users.
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affect logging in (cf., Section 7.6). Thus, we require an automated way to use a regular
web browser. Shepherd uses a standard automation tool for web browsers, Selenium
(see Section 2.2.2), to programmatically access browser instances.

4.3.2 Speeding up page analysis

Logins are typically slow and can easily take several seconds. When attempting
to login on unknown sites, using a form which may or may not be the login form,
with credentials that may or may not be valid, several passes have to be taken. When
executing a study over many sites with all these factors in mind, performance becomes
an important factor.

With respect to optimisation, we found that Selenium’s built-in functions are
slow compared to executing the same functions in JavaScript. For example, we mea-
sured that accessing the plain HTML content of elements takes 14 msec using Sele-
nium functions. When operating with a large number of elements, this becomes a
time-consuming operation. Another example is Selenium’s function to query multi-
ple elements find elements(), which takes 1 second per query. Combining that with
additional filtering based on an element’s attributes or content results in a large over-
head. Therefore, we switched from using Selenium’s functions to using in-browser
JavaScript.

To this end, Shepherd provides two JavaScript functions, href scanner() and ele-
ment scanner(). These functions allow efficient selection of anchor and other elements.
The former function searches amongst anchor elements with href attributes, while
the latter can select any element through a custom CSS3 selector. Both scripts take
a regular expression to filter selected elements based on their HTML content (e.g.,
login-related keywords).

Using these in-browser functions instead of Selenium functions provided a no-
ticeable speedup. For one site, switching to JavaScript functions improved time for
accessing and filtering elements from 16.8 seconds to 50 msec.

4.3.3 Runtime performance

With the above measures in place, Shepherd needs about 75 seconds to scan a site.
Thus, Shepherd can scan and login to about 1,500 sites per browser instance per day.
In our experiments, we found that a regular end-user machine can run five browser
instances, so Shepherd can scan about 7,500 sites per day per computer.

4.3.4 Post-login scanning

Following login, payload scans (implemented as Python modules) are executed. Shep-
herd provides an interface to interact with the browser and detect effects of inter-
actions. This interface is a wrapper of Selenium commands, but streamlines error
handling and ensures performance-optimised commands are used by the scanning
module. In addition, Shepherd offers functionality to determine which cookies are
authentication cookies based on algorithms used in earlier work [MFK16; CTB+14].
Furthermore, additional modules can be hooked into Shepherd. This allows for se-
quential execution of several scanning modules. Scan results are determined on the
fly and stored in CSV files for a posteriori analysis.
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4.4 Evaluation: logging in on websites in the wild

Next, we evaluate Shepherd’s ability to log in by means of a large-scale experiment.

4.4.1 Access credentials

The mandatory requirement for logging in across many websites is valid credentials.
However, for legal and ethical reasons, leaked credentials cannot be used in our re-
search. That leaves the following approaches to be considered:

1. using single sign-on (SSO)

2. automating registration

3. crowd-sourcing credentials

Note that none of these approaches will work flawlessly on all sites; each of these
therefore introduces a bias in the set of sites covered by it. Some of this bias will be
inherent to automated logins: credentials for, e.g., banking sites are not legitimately
available at scale. Other bias will be specific to each approach.

Using SSO to log in is supported on 6.3% of the Alexa Top 1 Million [GRC+18].
SSO offers a clear advantage for large-scale studies, i.e., only a limited number of cre-
dentials are needed to log in on many different sites. Unfortunately, using SSO is also
challenging: it may necessitate additional actions, such as account registration despite
SSO access and authorization granting, e.g., in the case of OAuth 2.0. This makes
using SSO rather hard. For example, Zhou and Evans had limited success [ZE14]: 912
logins out of 20K sites (4.6%). In addition to those challenges, using SSO imposes its
own bias on the set of sites: first, sites may insist upon their own account registration
system and not offer any other login (e.g., webshops, banks). Other sites may not
offer SSO for privacy reasons (e.g., adult entertainment). All such sites are excluded
from an SSO-only approach. Moreover, there is no single, world-wide most popular
SSO provider. Different regions prefer different SSO providers. Using common west-
ern SSO providers would bias the study towards their sphere of influence; minimising
such bias necessitates a world-wide view on all SSO providers and their sphere of
influence.

Automating account registration may address such concerns. A significant
benefit of this approach is its general applicability, as it does not require SSO avail-
ability. In a later study [DIP20], this approach was used to login on 23,176 sites (out
of 1.6M sites, 1.6%). A major downside to automatic registration is that the registra-
tion process is a critical security feature of websites frequently targeted for automated
attacks. As such, it is typically protected against automated visitors (e.g., by means
of a captcha). Automating circumvention of techniques deliberately employed to
prevent automated registration poses serious ethical concerns. Moreover, even if the
ethical issues are ignored (we stress: they should not), automated registration still
introduces a bias: it will only succeed on sites with insufficient defences against it,
thus likely skewing towards websites with weak security.

Using crowd-sourced credentials from public databases solves the ethical issues
related to automated account registration. Nevertheless, this also leads to a bias. The
bias inherent in legitimate crowd-sourced credentials is due to the type of accounts
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Figure 4.2: Relative frequency of domains with credentials of our testing database
within the Alexa Top 1 Million

that users are willing or allowed to share. For example, sites where registration is
simple and accounts are not associated with (personal) value will be prevalent, while
other accounts (banks, social media, online stores), will be underrepresented or even
absent due to the rules governing the crowd-sourcing effort.

To sum up, while automating registration managed (so far) to log in on the largest
absolute number of sites, its success rate is an abysmal 1.6% [DIP20]. Moreover,
automated registration might violate existing terms of services, while still skewing
the set of sites under consideration towards weak security. Using SSO is a more
viable option, but requires a complex automation infrastructure to perform an open-
ended scan with a low success rate (best success rate: 4.6%). In contrast, the use of
crowd-sourced credentials minimises the scanning effort, as only sites with suspected
logins need to be scanned. We acknowledge this approach might still suffer from a
bias coming from the availability of credentials, which however is still not entirely
solved by competitor approaches. Thus, we report on several experiments designed
to mitigate the impact of such bias in the following.

4.4.2 Acquiring credentials

We created a specific crawler to extract credentials from BugMeNot. The crawler uses
a list of domains and for each domain, extracts the credentials. Moreover, for each
set of credentials, it also stores meta-information supplied by BugMeNot (success rate
and number of votes). We seeded our crawler with the Alexa Top 1 Million sites of
October 2018. This resulted in the extraction of 129,252 accounts for 49,846 unique
domains.

The collected data set covers over 37% of the Alexa Top 10K domains and around
18% of the Top 100K, respectively (see Figure 4.2). The concentration of websites
decreases with the rankings and appears to converge around 2K domains per 100K
websites.
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Table 4.2: Failures detected by Shepherd. Failures caused by external factors are
marked in bold.

# sites out of

total 49,846 –
sites not reached 976 49,846 (2.0%)
login page not found 10,439 48,870 (21.4%)
login failures:
- invalid credentials detected 23,088 38,431 (60.1%)
- CAPTCHAs 1,497 38,431 (3.9%)
- unaccounted failure 2,783 38,431 (7.2%)

Figure 4.3: Funnel of the login process for domain-specific credentials

4.4.3 Shepherd’s login performance

Using data set with credentials from BugMeNot, we can measure success rate and error
causes. Starting with credentials for 49,846 sites, Shepherd was able to automatically
detect that all available credentials for 23,088 sites were rejected by the site as invalid.
This leaves 26,758 sites to attempt login. Shepherd could verify successful login on
7,113 sites, i.e., 26.6%. This is a lower bound: there will be external sources of errors
that Shepherd failed to detect. For example, it is not certain that all websites in the
set offered the option to login. Moreover, in some of the 3,950 cases where Shepherd
managed to submit credentials, it may have been successful but failed to verify this.
While this leaves ample room for improvement, this case study is of unprecedented
scale – easily an order of magnitude beyond any previous studies.

As discussed before, logging in is a sequential process, which means that an au-
tomated approach must execute sequentially. Imperfections in each step result in
a funnel-alike propagation through the login sequence, depicted in Figure 4.3. The
rates shown in Figure 4.3 were automatically detected (see also Table 4.2). Of course,
not all failures can be automatically attributed; for example, failing to reach the step
submitted can be due to captchas or invalid credentials, both of which are automat-
ically detected by Shepherd. These error sources account for the bulk of the failures
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for moving from login page found to submitted. Nevertheless, there are 2,783 websites
where this transition failed, yet the built-in failure attribution did not detect a cause.

Some of the failures are due to external causes, while other causes denote potential
areas for improvement of Shepherd. Failures on 25,561 sites (51.3%) were attributable
to external factors: site unreachable, no valid credentials, or captchas. The major
area for improvement is identifying the login starting point, which failed on 10,439
sites (20.9%).

4.5 Validation of Shepherd

As we rely on an untrustworthy source of credentials, it is not certain that a website
for which we possess credentials actually has a login facility. Also, our underlying
heuristics are not 100% perfect and may occasionally fail to determine the status cor-
rectly. To determine bounds on the error rates, we manually evaluated the following
five cases:

1. Failure to find login page,

2. not having reached status submitted,

3. detecting invalid credentials,

4. not reaching status verified,

5. reaching status verified.

We manually validate Shepherd’s login procedure by creating five sets of 100 web-
sites. In the first case, we manually visited sites, while for cases 2–5 we reviewed
automatically created screenshots. In all cases, the evaluator was at liberty to skip
sites containing adult content.4 These cases give insight into performance of the
heuristics and suggest which gains can still be made by improving heuristics.

4.5.1 Finding login pages

This case concerns websites where Shepherd was unable to find login areas. We
evaluated 100 such sites and manually identified login areas on 44 sites. On not
all of these, it was clear that the login area would provide a login for the initially
visited site. One site was not manually evaluated, as it contained adult content.
We did not discover login elements on the other 55 sites. Shepherd thus failed to
identify login fields that were present on 44 out of 99 sites where it did not find
login elements. Optimistically viewed, this can be generalised, which means that at
most 9.5% more sites could be reached. For this data set, that means that at best,
10, 439 · 44/99 = 4, 640 more sites could be included.

4as such sites are more likely to contain illicit material.
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4.5.2 Submission failures

This case concerns sites where Shepherd found a login area and submitted credentials,
but could not detect success. We reviewed 100 screenshots of login areas of such sites.
On 85 screenshots we derive that Shepherd found the correct login area. Another 8
show indications but raised uncertainties, as the login area was covered by a captcha
or pop-ups in a different language. Another 5 cases were failures, where Shepherd
focused elements belonging to registration elements (3) or ended up on age verification
pages (2), instead of login elements (which were also present).5 Two cases could not
be evaluated due to overlaid content or the site’s language.

4.5.3 Detecting invalid credentials

This case concerns Shepherd’s ability to identify invalid credentials. We used the
100 screenshots from case 2. In 87 screenshots Shepherd correctly noted messages
signalling invalid credentials (66) or the absence of such signals (21). In 8 cases Shep-
herd misclassified the responses from websites. The remaining 5 screenshots were not
used, as these showed registrations, were overlaid with pop-ups or not interpretable
due to the language. We conclude that given a login area, the process of credential
submission and evaluation of the success of that step performs reasonably well.

4.5.4 Submitted, but unverified

This case concerns sites where Shepherd successfully submitted credentials, but failed
to verify it. Note that verification is supposed to fail when login was not successful.
In 76 out of 100 cases, this was the case, underscoring the need to verify whether
login is indeed successful. 21 cases showed clear signs that Shepherd entered the
post-login stage, while 3 cases could not be verified. In other words: in at least 21%
of the examined cases, this process resulted in a false negative. In the experiment,
of the sites where credentials were successfully submitted, on 3,950 sites this could
not be verified. 21% of this is 829 sites. These 829 sites are sites where logins
were potentially successful, but not detected by Shepherd. Additional or improved
verification methods thus may lead to hundreds of sites more evaluated.

4.5.5 Verified

This case concerns 100 sites which passed verification. Of these, only one site could
not be checked. Two other screenshots showed that the user account was banned.
Nevertheless, Shepherd was clearly logged in on these sites. For that, we find the
verification process to have high accuracy (≥97%) and therefore have high confidence
in all findings on sites marked verified.

5This sometimes happens when sites offer login elements outside of a form element. For such
cases, other input elements can be confused with the login elements. Shepherd will use heuristics to
select the most likely login related elements.
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4.5.6 Performance of login-finding methods

Finally, we zoom in on the detection of the login area. In particular, we investigated
the success rate of the different approaches to finding login elements. We remark once
again that these methods are executed sequentially: only if methods 1–5 fail, method
6 is executed. Of the 38,431 domains where a login area was found, method 2 was
most successful, finding more than 40% of login areas.

Method 1 - Landing page: 6,311
Method 2 - URLs (first level): 15,438
Method 3 - Clicking elements: 4,004
Method 4 - Try standard URLs: 3,745
Method 5 - Search Engines: 8,875
Method 6 - URLs (second level): 76

In conclusion, Shepherd managed to successfully login on 7,113 sites (submitted
and verified). We found that the heuristics used in Shepherd can also be improved.
Main areas for internal improvement are:

• improving identification of login elements.
This can lead to (at most) 44% more sites reached, or 4,640 additional sites in
this experiment.

• reducing false negatives for verification.
This can lead to (at most) 21% sites where submission was successful, or up to
829 additional sites in this experiment.

However, the number one area for improvement is: valid credentials for more sites.
Shepherd’s detection of invalid credentials found that for 60.1% of sites where login
elements were found, no valid credentials were available (23,088 sites in this study).

4.6 Login performance comparison with previous
work

Various steps towards more automated approaches to logging in have been made (cf.,
Section 3.1.1). We contrast the performance of these earlier approaches with the
performance of our evaluation of Shepherd. Table 4.3 contains login/session security
related studies which either do or do not provide login automation. Van Acker et
al. [vAHS17] and Ghasemisharif et al. [GRC+18] evaluated aspects on login pages.
As a result, they reach a large number of sites but they do not reach post-login
areas. Thanks to user participation, Mundada et al. [MFK16] manage to conduct
post-login security scans. At the same time, their study reaches a far smaller num-
ber of logins. To the best of our knowledge, only three earlier approaches achieved
some success in automatically logging in on websites. Robinson and Bonneau [RB14]
manually selected login pages that facilitate Facebook Connect to submit credentials
on these sites automatically. In contrast, Calzavara et al. [CTB+14] used a crawler
that submits credentials on websites with previously created usernames and pass-
words. They conducted two studies with the same methods; reaching 70 sites the
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first time, and 215 sites in the follow-up study [CTC+15]. The so far largest study
was conducted by Zhou and Evans [ZE14]. Note that Zhou and Evans do not provide
a number of reached post-login areas, wherefore we extrapolate this number from the
success rate and websites with SSO login areas reported by the authors. Based on
our experiment, Shepherd shows to outperform previous approaches in the number of
successfully reached post-login areas.

4.7 Potential use cases

In this section, we highlight use cases for Shepherd. In general, we see two potential
areas where Shepherd can boost security and privacy research. These are the investi-
gation of post-login features across multiple websites, and the comparison of pre- vs.
post-login aspects.

Measuring post-login features. By logging in, Shepherd receives authentication
tokens from websites, which allows studying the security of such tokens. Shepherd
possesses an implementation to extract authentication cookies, facilitating investiga-
tions into properties of these. Furthermore, Shepherd could be extended to identify
sites whose login system exhibits specific behaviour. One example could be sites that
store session identifiers in local storage instead of using cookies; another is looking for
sites vulnerable to sub-session hijacking [CRB19] (which relies on presence of multiple
authentication cookies).

Moreover, the automatic identification of authentication cookies enables construc-
tion of a ground truth for machine learning purposes (e.g., [CTB+14]). The most
extensive set of authentication cookies reported in literature amounts to cookies from
215 sites (332 authentication cookies) [CTC+15]. Using the authentication cookie
identification mechanism of Shepherd, we collected a set of authentication cookies for
6,335 sites – the automated mechanism failed to identify cookies on 778 out of the
7,113 sites where login was successfully verified.

Finally, Shepherd enables measuring adoption of security measures for logged-in
users, such as cookie flags such as SameSite, Secure, etc.; HTTP-headers such as
HSTS; CSRF tokens [CCF+19]; etc.

Table 4.3: Comparison of manual and (semi-)automated login studies

lacks automated login has automated login

[vAHS17] [GRC+18] [MFK16] [RB14] [CTC+15] [ZE14] Shepherd

automation:
- finding login area ✓ ✓ – – ✓ ✓ ✔
- filling credentials – – – ✓ ✓ ✓ ✔
- verifying logins – – ✓ – ✓ ✓ ✔
# supported languages 10 ? ? ? ? 1 19
# sites scanned 100K 1M 149 203 215 20K 49K
# successful logins n/a n/a 149 203 215 912† 7.1K

? number of supported languages unknown.
† computed, as [ZE14] does not explicitly state this number.

n/a not applicable.
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Anonymous visitors vs. logged-in users. The above suggestions for measure-
ments can also be applied before logging in. Hereby, Shepherd enables studying the
contrast between anonymous visitors and logged-in users on a large scale. For ex-
ample, logged-in users may face less trackers than anonymous users. An additional
direction is to use Shepherd to create authentic user profiles by gathering cookies
from several sites. User profiles have already been used in earlier research to analyse
ads [CMC+15] or evade bot prevention measures [SPK16a]. Finally, Shepherd could
be extended to automate logging out. This would enable a large-scale study compar-
ing the session state while logged-in with the state after logging out, including e.g.,
identifying flaws in session invalidation.

4.8 Extending Shepherd

As Shepherd provides functionality which is needed to explore post-login areas, it can
be extended to widen its reach and scope. In the following, we present two extensions
to Shepherd, that serve this purpose: logging in via a SSO provider and logging out.

4.8.1 Proof-of-Concept Facebook extension

In addition to domain-specific credentials, we build a Proof-of-Concept (PoC) to sup-
port single sign-on credentials. The main benefit of using SSO credentials is that
this avoids the need to acquire a large set of valid credentials. On the face of it,
it would seem that adapting Shepherd’s core functions to login with SSO would be
straightforward. In practice, we encountered difficulties doing this. As a result, we
designed a further set of functions that allow Shepherd to handle the specific nature
of logging in with SSO intermediaries. The following focuses on deviations from the
domain-specific login design.

Searching for SSO login buttons. SSO login areas are usually activated by trig-
gering an interactive element. Hence, the login area cannot be identified by search-
ing for standard login elements such as a field for username or a link labelled ‘lo-
gin’. Rather, SSO-specific elements must be identified. Unfortunately, these elements
are not standardised between SSO intermediaries and often differ between websites,
even for one intermediary. An additional challenge is that some SSO intermediaries
also provide social media features, such as a ‘like’ or ‘share’ button. Distinguish-
ing such elements from the sought-for login elements is difficult. Similar to Zhou
and Evans [ZE14], we address this by filtering interactive elements based on a set of
keywords. These keywords are also specific to the SSO intermediary, which poses an
additional challenge for supporting multiple intermediaries. We also encountered that
in a case of insufficient filtering, these elements can lead to false positives as these
produce similar login dialogues. We avoided these by using URL whitelists.

Submitting and verification. A hurdle is that after logging in with single sign-on,
the website requests that the user fills in an enrolment form of some kind. Access to
other parts of the site is blocked until this form is filled in. This behaviour does not al-
ways occur, but frequently enough that it affects the success rate. While that presents
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an obstacle to achieving the full flexibility that domain-specific credentials offer, it
does not impede gauging the usefulness of single sign-on for enhancing the coverage of
Shepherd. For that, forms do not have to be filled in. Unlike domain-specific creden-
tials, SSO credentials can hold additional details (e.g., real name or associated phone
number), which can be used in future versions for improved verification procedures
or to finish enrolment.

Implementation and performance. We developed an initial extension to Shep-
herd’s core functions to login using Facebook’s SSO service. In our testing set of 50
sites containing SSO logins for Facebook, it was able to identify login areas on 41
sites. Shepherd missed login areas on 7 sites, while two scans failed. Once Shepherd
has found an SSO login, it processes the login as a regular login, but with the supplied
Facebook credentials. The current identification process for Facebook logins is based
on domain filtering (of URLs in the visited page). While this proved to be effec-
tive in practice, this does imply a certain amount of fine-tuning is needed to support
additional SSO providers.

Due to the above mentioned difficulties in identifying the correct elements for SSO
logins, the extension is significantly slower than regular Shepherd. The extension is
able to scan about 3,000 sites per machine per day.

4.8.2 Validation of the Single Sign-On extension

We scanned the Alexa Top 10,000 sites using single sign-on credentials to validate
the extension. We remark here that these sites do not all support single sign-on
with Facebook credentials. This is intentional, as Shepherd should be able to scan
any site. The scan was carried out with two machines, each using its own Facebook
account, created newly for this purpose. We further divided the target domains into
four equal sets, so that the results can be examined between scanning these sets. The
first machine was used to scan the first three sets, while the second machine scanned
only the last set. The Facebook account for the first machine was blocked at a certain
point while scanning the second set, due to posting inappropriate content. Shepherd
caused this by clicking share buttons on visited sites (of an adult nature). We adjusted
the extension to address this by blacklisting certain types of Facebook URLs. After
recovering the blocked account and scanning the third set, we found 55 shared posts on
the account (each of which must be due to a successful login). Shepherd misclassified
these as logins. The second Facebook account was also blocked, this time due to
‘suspicious behaviour’. Recovery of this account was more involved and therefore
omitted. Unlike the other three sets, we thus could not verify Shepherd’s results for
this set in the Facebook account.

As shown in Table 4.4, Shepherd thought it recognised Facebook-based SSO logins
on around 20% of the Alexa Top 10K. While Shepherd was able to submit credentials
to 93.1% of these, verification only succeeded on 20% of the submitted sites. It
could be that Shepherd’s default verification process is unsuitable for SSO logins, or,
perhaps, often an additional registration form appeared and full site access was not
yet granted. Shepherd set the percentage of sites on which it believed to have found
Facebook Login at 20%, and the percentage of sites where it successfully verified login
at about 4%. Logging in with Facebook leaves traces in the permission settings of
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Table 4.4: Performance of the Single Sign-On scan

# sites out of

total 10,000 –
sites reached 8,829 10,000 (88.3%)
SSO login found 2,057 8,829 (23.3%)
submitted 1,915 2,057 (93.1%)
verified 383 1,915 (20.0%)
auth cookies found 330 383 (86.2%)

a user account. We checked this setting four our first account and found 664 apps
with specific permissions. To compare these numbers, we looked for reliable numbers
on the adoption of Facebook Login. The reported rates we encountered predicted
significantly lower adoption. Nevertheless, we believe that the SSO login detection
algorithm can be further improved to reduce false positives.

4.8.3 Logout Automation

We leverage the similarities between the logout process and the login process, which is
already supported by Shepherd. In particular, our extension to log out follows similar
steps, executed after a successful login.

The first step is to visit potential pages of interests. For our extension, we choose
the page reached after logging in (likely a profile page) and the site landing page. Note
that a well-designed website facilitates logout buttons on any page, after logging in.
Second, we identify candidates for logout interaction elements. To this group belong
elements that offer click functionality and contain keywords related to logging out.
To determine if an element is clickable, Shepherd scans elements for attached event
listeners, element tags (e.g., buttons, anchors etc.), and common properties of clickable
elements. The third step is to define the order of elements to be triggered. For that, we
rely on the distance of an element from the upper right-hand corner of the page. We
noticed this aspect as a common property of logout elements during the development
of our extension. This practice has also been shown to be successful for identifying
login buttons in previous work [ZE14]. Fifth, Shepherd triggers these elements first by
opening URLs from anchor elements, and then by performing mouse clicks. The final
action is the verification of successful logout. For a verification, Shepherd visits the
same page used to verify success of login, and checks whether login verification fails,
i.e., the signals used to detect a failed login are used to detect a successful logout.
More specifically, Shepherd uses the same information from the login phase to check
whether the existence of login forms, logout elements, password fields and account
information on the page has changed.

4.8.4 Validation of the logout process

We ran our logout extension on a set of 6,124 sites, where Shepherd successfully
logged in. We found that logging out from existing sites is surprisingly difficult: we
only managed to automate the logout process on 3,302 sites, which is 54% of the
sites where we successfully logged in. We manually investigated causes for failing
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logout. This revealed several causes. First of all, paths to logout elements vary
more in labelling than for login elements. Some examples include logout, account,
settings, profile, the actual username, “my” + the site’s name, etc. Exacerbating
this, some websites hide the actual logout interaction element in overlay menus. That
is, there are websites that only inject logout interaction elements into the DOM when
the corresponding menu is activated. Identifying and triggering such menus is much
more challenging, as these vary in appearance and implementation. Another cause
we found is related to banned accounts. For these sites, logging in succeeds, but any
interactive element in the post-login phase is blocked, including, interestingly enough,
the ability to log out. This problem is related to the used credentials, and cannot be
resolved in the automation process. A third cause, seen in a small number of sites,
comes from confirmation requests when triggering a logout. Integrating handling of
logout dialogues is left as future work.

4.9 Conclusions

Many previous works have studied the Web. Most of these were limited to the public
areas of websites. This implies that post-login aspects were hidden for such studies
or could not be measured at scale. Research that attempted to address the post-login
world, mostly fell back on manual intervention, to avoid the many challenges with an
automatic approach [TDK11]. Only three previous studies had access to post-login
areas of larger set of websites. All these used means to automate logging in, but were
bound to certain type of logins. In this work, we took a generic approach to login on
websites. For that, we designed and developed Shepherd, a tool that enables post-login
measurements of unknown websites. As login processes are very diverse, automated
logins cannot achieve full coverage. Moreover, the variety in login processes implies
many design challenges. Shepherd accounts for this by several failure modes. The
study conducted with Shepherd shows that large-scale automated login is feasible.
Previous best efforts using a semi-automated approach [MFK16] managed 149 sites,
while automated approaches reached 912 sites [ZE14] using SSO credentials.

In contrast, Shepherd can use either domain-specific or SSO credentials. In a case
study with domain-specific credentials, Shepherd achieved 7,113 successful logins, an
order of magnitude beyond previous best effort at logging in automatically. In a
limited experiment with Facebook SSO credentials, Shepherd achieved 383 logins.

Future work. We are re-designing Shepherd’s SSO component to use a more generic
approach for SSO logins, which will lead to supporting more single sign-on frameworks
and make the SSO-related procedures more robust. Given that there are various SSO
providers commonly used in non-Western countries, this enables various types of de-
tailed comparison studies between countries. Secondly, we are planning to extend
previous studies of cookie security for post-login cookies. Related to this, integrating
Shepherd-alike capabilities into a privacy measurement framework such as OpenWPM
would allow to study whether logged-in users gain or lose privacy compared to anony-
mous visitors. Similarly, a combination with an existing security scanner could allow
remote security scans (e.g., SQL injection, XSS, or CSRF) in the members-only area
of websites.
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Chapter 5

Multi-View Data Acquisition

Online shopping has simplified the collection of shoppers’ personal data.
Vendors potentially use this data to serve individual prices per customer.
Several academic works have investigated how device or user characteris-
tics may influence prices online. However, online vendors typically offer
different stores to sell their items, such as desktop sites, mobile sites,
country-specific sites, etc. Online rumours and news media reports persist
that item prices between such views differ. To date, no systematic method
for analysing this question has been put forth.

In this chapter, we devise an approach to investigate store-based price
differentiation based on three pillars: a framework that can perform cross-
store data acquisition synchronously, a method to perform cross-store item
matching, and constraints to limit client-side noise factors. We test our
approach in an initial case study to investigate store effects on flight pric-
ing. We gather pricing data for 824 flights from 15 stores (incl. desktop
sites, mobile apps, and mobile sites) over a 38-day period. Our experiment
shows that price differences occur frequently. Moreover, even in a limited
run, we find strong indications of store-specific pricing for specific vendors.
We conclude that (i) a more extensive study into store-based price differ-
entiation is needed to gauge this effect better; (ii) future research in this
general domain should take store-based differences into account in their
study design.

This chapter is based on the following publication:

Are some prices more equal than others? Evaluating store-based price
differentiation. Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and
Godfried Meesters. In Proc. 5th NDSS Workshop on Measurements, At-
tacks, and Defenses for the Web (MADWEB’23), DOI: 10.14722/mad-
web.2023.23011, 2023, [MADWeb23].
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5.1 – Introduction

5.1 Introduction

Shopping is a basic fact of life that contains an interesting adversarial relation: the
shopper wants to pay as little as possible, while the vendor wants to sell for as much
as possible. In brick-and-mortar stores, either side has limited access to information
to improve their side of this bargaining process. This changes radically for online
shopping: customers can trivially look up prices of competitors, while vendors can
leverage assorted technical measures to glean more information about their customers.
This allows vendors to tailor their prices on the fly. With respect to this, we distin-
guish, as is common, between price differentiation and price discrimination. Price
differentiation occurs when the same item is priced differently in another situation.
Price discrimination occurs when this difference can be attributed to differences in
user attributes between those two situations. Thus, all price discrimination is a form
of price differentiation, but not vice versa.

Price discrimination has been the subject of various academic studies. In 2012,
Mikians et al. [MGE+12] found indications of price discrimination using automated
scraping. Since then, studies investigated the effect of user attributes (amongst others,
device fingerprinting [HTW+18], user profiling [HSL+14]), explored different methods
to collect data (such as Amazon Turk [HSL+14], crowd-sourcing [MGE+13; ISS+17]),
and investigated the occurrence of price discrimination in different markets (e.g.,
airline tickets [VNB+14], rental cars [HTW+18]).

Less attention from the academic community has been devoted to group-targeted
pricing. Several cases have occurred in real life, such as ZIP-code-driven pricing of
homework tutoring in the US [AML15], or price differences between mobile apps and
desktop sites as reported by German travel magazine Clever Reisen [Kau17]. Clever
Reisen manually checked trip prices once, using up to four different stores (mobile
and desktop). They found that prices can vary up to 8% between a company’s mobile
app and its website.

This informal investigation of price differences between two stores of the same
vendor poses an especially interesting case: it is highly relevant to online shopping
and could be systematically investigated from a user point-of-view, without access to
the vendor’s internal processes. Moreover, it is quite common for vendors to provide
multiple online stores for their items, such as per-country stores (e.g., amazon.de, ama-
zon.fr) or provide multiple versions of the same store (e.g., desktop/mobile site/app).
While such stores cater to specific niches, the vendor could also choose to vary pricing
between them. To the best of our knowledge, there has not yet been a systematic
investigation into whether price differences occur between different stores of the same
underlying vendor. In this chapter, we propose a method to systematically investi-
gate store-based price differentiation, provide a proof-of-concept implementation and
execute a limited validation test of the proof-of-concept against vendors of flights. For
all vendors, we compare their app vs their German desktop site and their French site
vs their German site. In addition, for one vendor, we compare its app vs its German
desktop website vs its German mobile site. Even in this limited validation test, we
find strong indications of store-specific pricing.

Contributions. We develop a device-independent approach to simultaneous data
extraction. The approach relies on using dedicated machines to perform the data
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extraction, either by accessing the web store themselves using Puppeteer or by in-
teracting with a device (e.g., an app on a mobile phone) to do so using a dedicated
extractor (for mobile phones, UI Automater and Appium). Data from apps and
mobile sites are collected by using smartphones. We test our proof-of-concept im-
plementation by collecting data on a handful of flights from 15 stores of 5 vendors
over a period of 38 days. Our analysis of the collected data strongly suggests that
store-based pricing occurs for more than half of the investigated vendors.

Ethical considerations. Our case study required visiting multiple stores by one
company synchronously. This course of action can have a negative impact. First,
booking systems for flights and accommodation tend to make a tentative reservation
of items during the booking process to ensure the availability of the item offered to
the client. During this time, the item is not available for other customers. To avoid
this, we only collected data from search pages and never entered further into the
booking process. To the best of our knowledge, bare item searching does not affect
item availability.

Second, our queries could potentially impact prices shown to other subsequent
visitors. The low number of queries per day produced by our bots should have negli-
gible influence given the popularity and, therefore, large user base of the investigated
services.

Third, we seek to minimise the impact on the services. Each comparison involves
simultaneous data acquisition across all involved stores. We only collect data for one
comparison at a time to avoid hammering the various stores. That is, data collection
for the multiple comparisons is triggered sequentially. In addition, we do not issue
repeat requests in case of a failure.

Outline. In this chapter’s remaining sections, we present our design and imple-
mentation of a price comparison framework that accounts for different device classes
(Section 5.2). We deploy to our framework to create a data set with flight prices
from six vendors (Section 5.3). We use this data set to identify price differences (Sec-
tion 5.4). Finally, we discuss the limitations (Section 5.5) and reflect our findings
(Section 5.6).

Availability. Our Proof-of-Concept implementation, as well as our data set, are
available for download [ART-MADWeb23].

5.2 Design of a price comparison framework

Studying prices on multiple platforms (e.g., mobile apps, desktop websites, etc.) re-
quires two technical components: a data collection part, which retrieves item data
from the studied vendors, and an item equivalence determination procedure, which
determines whether two collected pieces of data concern the same item. An important
goal of data collection is to eliminate or mitigate any price influences that are not
subject to study. The purpose of item equivalence is to ensure that only equivalent
items are compared, that is, to prevent the proverbial comparing of apples to oranges.
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First, which items should be considered equivalent depends on the underlying
study. For example, a study comparing prices of round fruits per weight would indeed
compare prices of apples to prices of oranges. A study comparing prices of cultivars
of apples would distinguish between golden delicious apples, braeburn apples, granny
smith apples, etc., whilst considering small and large apples of the same cultivar
equivalent. Note that due to EU law,1 items must be purchasable for the price on
display. Thus, additional fees can only concern extras; hiding necessary fees is not
allowed. This implies that, for vendors selling to EU citizens, items can be compared
once the vendor store displays a price. As item equivalence depends on the specific
study under consideration, we detail our interpretation of item equivalence in the
discussion of the validation experiment (Section 5.3).

Secondly, the data collector needs to reduce the effect of confounding factors.
Here, the fact that this framework studies pricing on different stores comes into play.
Various aspects may affect item price beyond the store used to view the item. Care
must be taken to mitigate their impact, preferably by eliminating that completely.
Alternatively, by ensuring their impact is constant or can be filtered out in another
fashion.

5.2.1 Data acquisition methodology

To acquire item prices, we must collect data from each vendor. This can be done by
automated tooling or manually. Both automated tooling and manual data acquisition
require upkeep. Manual data acquisition is labour-intense, which we could overcome
by using crowd-sourcing. Previous studies have shown that crowd-sourcing using a
browser plugin eliminates the limitations of maintaining scrapers and allows targeting
a broad number of stores [MGE+13; HSL+14; ISS+17]. However, this advantage
does not hold when considering multiple device models (with different screens and
resolutions) and classes (mobiles, desktops, tablets). This leads to a wide variety of
vendor app/site layouts, which a crowd-sourcing solution should all encompass. Even
more damning is that crowd-sourcing relies on individuals’ devices. The vendor could
employ price discrimination, which is a confounding factor for studying store-based
price differentiation.

Nevertheless, automated scrapers are not perfect, either. As recent studies have
shown [ESORICS19; JSS+21; CoNEXT22; CLB+22], desktop scrapers tend to be
recognisable and recognised scrapers receive different results than regular user browsers.
Therefore, measures must be taken to mitigate bot detection. The same applies to
mobile scraping using emulated devices [YY20]. Previous price discrimination studies
on mobile devices approached data acquisition by using modified desktop browsers
with fitted userAgent strings. However, state-of-the-art bot detection companies use
browser fingerprinting techniques [BMP+16; ESORICS19; VRR+20] and input from
client hardware, such as mobile sensors [DAB+18], to distinguish bots from real human
users. Therefore, to ensure that these aspects do not foul up mobile data acquisition,
native devices should be used for the data collection.

Another approach to acquiring data pertaining to mobile phones is to gather pric-
ing data directly from a vendor’s backend for mobile users [CMW16]. This can be

1https://europa.eu/youreurope/citizens/consumers/shopping/pricing-payments/index_en
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Figure 5.1: Framework design

done in two ways, by scripting user interface (UI) interaction on the client devices or
by faking client interaction on the network level. Automation frameworks, such as
Selenium, Puppeteer or Appium, offer APIs to script human interaction. Much like
website scrapers, each scraper for a store requires an individual script. In addition,
updates to the store’s user interface may break scripts and, therefore, the data col-
lection process – again, similar to website scraping. Faking client interaction on the
network level has the advantage of skipping user interface aspects. However, network
traffic is usually encrypted. While this is not a show-stopper, the process of bypassing
encryption becomes cumbersome when the app uses key pinning. Even after circum-
venting encryption, we found that mobile apps typically connect to tens of different
API endpoints. Since it is unclear what calls are sufficient to mimic an app, this
makes faithful data acquisition via mimicking apps particularly hard. Thus, while
mimicking apps can be less error-prone, initial development is far less straightfor-
ward than using scrapers, especially when targeting multiple vendors (i.e., unrelated
stores/APIs). Moreover, by using UI interaction on client devices, maintaining data
extractors on mobiles remains in the same category as desktop extractors: monitoring
UI changes. Therefore, we make the design choice to script UI interaction for mobile
data extraction.

5.2.2 Handling confounding factors

As stated, the goal of a framework is to eliminate or mitigate confounding factors.
We broadly categorised previously reported aspects into four main areas: client-side
aspects, timing aspects, contextual constraints, and pricing errors.

Client-side aspects. Client-side aspects include effects of browser fingerprinting,
client profiling, location, and so on (see Section 3.1.3). These are necessarily present
(even an empty profile is a profile); thus, their effects cannot be eliminated. A price
measurement framework should keep client-side aspects constant as far as possible to
limit this effect. That is: ensure the same browser fingerprint, start from the same
user profile, use the same IP address, etc.

Timing. Progression of time affects prices, e.g., expiring items or tickets for events
on specific dates. Vissers et al. [VNB+14] established that prices can already differ
within a one-minute window. Moreover, increased interest may affect price –one
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store’s data collection may impact prices in another store. Due to network effects, it
is impossible to ensure that queries for different stores arrive simultaneously. We point
out that the goal of a framework is not to measure the digital world but to measure
the human world. Therefore, we take the position that best-effort synchronisation is
sufficient – if pricing is then still affected, a regular user would also encounter prices
affected by random network delays.

Contextual constraints. Contextual constraints such as increasing energy prices,
tax differences, natural disasters, etc., may affect prices. These should affect stores
in the same context equally. Considering stores in different contexts (e.g., country-
specific sites), the difference should be constant across all items. However, context
can change over time (e.g., tax changes). A price measurement framework should
collect data on multiple items over time to account for contextual effects on pricing.

Pricing errors. Pricing errors such as delays in propagating price updates or dec-
imal point errors can cause different prices between stores. Vendors work to catch
price errors. Thus, we can eliminate such effects by gathering item prices over an
extended period.

5.2.3 Framework design and Proof-of-Concept implementation

Based on the problem analysis above, our system must be able to synchronise het-
erogeneous scrapers distributed over multiple devices. Further, it must support data
collection on mobile devices and aggregate collected data into a single repository. This
leads to the design depicted in Figure 5.1.

The central component is the scheduler that enforces the needed synchronisation.
It schedules jobs to orchestrate other components in the system, supplies the infor-
mation (search query input) to run scrapers (extraction tools), and manages a central
data repository to persistently store results collected by devices. When a device re-
trieves tasks to query items from stores, it initiates a scraper. In our case, a scraper
is an automated store-specific data-extracting client. It interacts with one store to
request items. In the case of a mobile store, the design supports using an emulator
as well as interfacing with an actual mobile device. In the latter setup, the mobile
device acts as an interface for the scraper. Session initiation and communication with
the store thus happen on the mobile device. Depending on the implementation of
the system and target of the study, an external VPN server or proxy can be used to
control outgoing IP addresses.

We created a Proof-of-Concept implementation to validate the design from the section
above (see [Mee21] for a full, exhaustive description). An overview of our implemen-
tation is shown in Figure 5.2. The scheduler, consumers/producers and scrapers are
written in JavaScript and run in a Node.js environment. To facilitate communication
between the scheduler and other devices, we use the BullMQ framework,2 a message
queue system based on Redis.3 We use one queue for desktop scrapers and a separate
queue for mobile device scrapers. Finally, we use one queue for collecting data from

2https://github.com/OptimalBits/bull/tree/develop/docs
3https://redis.io/
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Figure 5.2: Proof-of-Concept implementation

all scrapers. The scheduler stores incoming results in a PostgreSQL database. We
added a command line interface to control the scheduler and to push new tasks into
a queue. We use this interface via cron jobs use to automatically push tasks to the
workers.

The connection between consumers/producers and their scrapers is facilitated via
interfaces in TypeScript. Every scraper must implement this interface, specifically,
the methods start, stop, fill search, submit search, store results, and take screenshots.
Website scrapers use Puppeteer4 with the stealth plugin5 for Puppeteer. For mobile
scrapers, we connected the Android device via the USB port. To control the mobile
device’s interface from the scraper device, we set up an Appium6 server on the scraper
device and UI Automator on the mobile device. Appium then uses the UI Automator
to extract and submit data and to perform UI tasks.

5.2.4 Client synchronisation

A data collection process involves multiple (at least two) scrapers that execute the
following steps:

1. initialise session,

2. fill in search form,

4https://github.com/puppeteer/puppeteer
5https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
6https://appium.io/
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3. submit search form,

4. retrieve & parse items from result page, and

5. send parsed data to the scheduler.

The execution time of each step would vary on a single device between executions
already. Our design allows for heterogeneous device classes, which exacerbates this
problem. Our PoC implementation addresses this (see Section 5.2.2) by adding two
synchronisation barriers; before step 2 and before step 3.

As soon as a device is ready for data acquisition, it retrieves a new task from
the scheduler and initiates the corresponding scraper (step 1). The synchronisation
barrier ensures that the filling in of the search forms is started simultaneously across
all scrapers. We synchronise scrapers a second time at the beginning of the data ac-
quisition phase (step 3). That is, we synchronise the submission of the search query.
Note that due to the centralised design, we approximate simultaneous requests by
triggering all scrapers to submit the query simultaneously. Nevertheless, implemen-
tation details and run time environments of the individual consumers, scrapers, and
target’s backend will introduce small timing variations.

5.3 Experiment: investigating flight pricing

In order to validate the design, we execute a modest experiment to investigate store-
based price differentiation in flight tickets. We choose to focus on airline tickets, as
these often are available via multiple stores (app, desktop site, mobile site, reseller).
Moreover, while Vissers et al. [VNB+14] have not found any evidence of price dis-
crimination in this domain, Clever Reisen [Kau17] claims to have witnessed price
differentiation here. Besides validating the design’s viability, our experiment’s pri-
mary goal is to determine whether a large-scale investigation is warranted. To that
end, we run our experiment over a period of 38 days for five popular7 travel companies
that offer flight tickets.

5.3.1 Data acquisition

To collect data, we select two airlines and three travel agencies. We conducted our
experiment in May and June 2021, using all these companies to search for airline
tickets. As input data, we consider European cities and pick random dates between
July and August 2021. Further, we use corresponding options within search masks to
query for one-way flights only. We left other options in their default setting. Before
running our experiment, we manually checked that tickets were offered under equal
conditions. For example, whether one store contains additional services compared to
another. We verified this by installing the app or visiting the website to review the
default setup. Our check revealed no differences between stores (see Appendix A).

For each company, we create scrapers to automatically query items via the mobile
app, the mobile store, the German desktop website (*.de) and the French desktop
website (*.fr). As we compare items retrieved from mobile websites exclusively for

7With the exception of airfrance.de (Top 240K) and kayak.de (Top 140K), all domains are listed
in the Tranco Top 100K [LVT+19] (ID K2Z6W).
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one company, our experiment covers 15 stores in total. With these store scrapers, we
construct comparisons by running at least two different scrapers synchronously. For
comparisons that include mobile apps, we use German localisation. To do so, we visit
the company’s .de domain with our website scrapers. For the mobile scraper, we set
the system language to German and downloaded the corresponding localised mobile
application and set the phone’s GPS location to a place in Germany, co-located with
the town of the IP-address origin.

For each two-way comparison, we collect data thrice daily between 25 May and
2 July 2021, for a maximum of 114 data points for comparison. Note that to be
used in a comparison requires all involved scrapers to be successful, which underlines
the fragility of the data acquisition process. Scraper failure, a regular occurrence,
happens due to frequent layout changes, changes in flights on offer, as well as network
hiccups. This necessitated frequent scraper updates. We also run one three-way
comparison (app/web/mobile). Since this comparison requires three simultaneous
successful scrapes for one comparison point, we foresee a dearth of comparison points.
To mitigate this, we run these scrapers longer until we collect over 70 comparison
points. They ran from 25 May to 5 July (maximum of 123 comparison points). We
collect items shown on the result page without following the booking process to avoid
blocking items for other store users.

Finally, during each run, we took screenshots of all result pages and recorded
HTTP responses containing JSON-formatted data. A random selection of these was
then manually compared with the collected data. This verification step found no
errors in the automatically collected data.

5.3.2 Determining item equivalence

We must identify equivalent items from two (or more) stores to compare items. We
conduct multiple steps to determine whether items are equivalent: attribute normali-
sation, relevant attributes, and robustness against minor attribute changes. We point
out that the choices made here significantly affect what items are considered equiv-
alent and, thereby, the nature of the study. In our case, we aim to determine the
price of a trip between two airports. If departure and arrival airports are equal, and
departure and arrival times are identical, we consider the items equivalent. This as-
sumes that no two flights would leave from one airport and arrive simultaneously at
the same destination airport. This is not true for codeshare flights, but we consider
these as the same flight.

To determine item equivalence for our setting, we first normalise attribute values
(‘Heathrow’, ‘London – Heathrow’, and ‘LHR’ → LHR). More specifically, we check all
collected attribute values and manually map these to normalised values. For numeric
attributes, we establish a standard format and map all values to the standard format.
Secondly, we decide on the set of attributes to include for determining item equiv-
alence. We chose the set {date, time, departure airport, arrival airport}. Omitting
attributes such as flight number and airline helps to unify codeshare flights. Lastly,
shifts in departure/landing time occur. These constitute different items, which we
easily identified and manually matched with their originals throughout the data set.
This makes the data set robust against minor changes in these attributes.
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Table 5.1: Overview of flight data set

company scrapers date orig–dest #comps. #trips

Air France app/web July 01 FRA–CDG 73 2 (2)
August 01 FRA–CDG 72 2 (2)
August 09 VIE–AMS 72 3 (3)

.fr/.de July 01 FRA–CDG 68 2 (2)

Eurowings app/web July 11 AMS–HAM 8 1 (1)
August 12 CGN–LON 7 3 (0)

.fr/.de July 11 AMS–HAM 11 1 (1)

Expedia app/web July 01 BRU–AMS 29 24 (3)
August 10 AMS–ARN 95 7 (6)
August 18 OPO–BRU 101 20 (6)

.fr/.de July 01 BRU–AMS 74 5 (4)
August 01 BRU–AMS 83 4 (4)

KAYAK app/web/mob. August 18 OPO–BRU 71 154 (4)
app/web August 07 MAD–FCO 109 247(13)

August 13 BER–BCN 101 273 (6)

Opodo app/web July 01 FRA–CDG 99 9 (9)
August 01 FRA–CDG 90 18 (7)
August 23 CGN–PRG 103 16 (1)
August 18 OPO–BRU 101 17 (4)

.fr/.de July 01 FRA–CDG 101 9 (9)

5.3.3 Resulting data set

Table 5.1 shows which vendors/stores were visited, describes the used input search
queries, and describes the data points collected. The #trips column shows the total
number of unique trips (modulo schedule updates) found. Each trip is one journey
from departure to arrival airport, including any intermediate stops. In parenthesis,
this column shows the number of equivalent trips found across multiple stores si-
multaneously. We only compare prices if we find identical items from different stores
simultaneously at least once. In some cases, there are vast discrepancies between these
numbers. We found three major effects for this: first, for vendors who return many
trips, much fewer trips are visible on mobiles (both app and mobile site) than on the
desktop without interacting. Second, some vendors offer multi-stage alternatives for
direct flights, such as a bus transfer to an alternate departure airport or a train trip.
These two effects explain most of the discrepancy. Lastly, some trips only occur once
or a few times. We typically see these only on one store (possibly also due to the first
effect). We include the number of trips found on more than one store as only these
can be used to analyse store-related price differences. Finally, the #comps column
counts runs where all involved scrapers successfully retrieved their result page. These
are the data points that can be used for data analysis – the number of data points
for each trip for which we collected data simultaneously from multiple stores. Note
that these may not be uniformly distributed over the trips found on multiple stores.

5.4 Analysis

Our analysis aims to evaluate whether our approach can find any cases of store-based
price differences. In addition, we want to attribute any found differences to likely
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causes. Our analysis proceeds in three stages. First, we consider, for each vendor, the
distributions of relative differences between stores (via boxplots). Second, we consider
patterns in pricing via a heatmap. Third, we consider price differences for specific
trips, plotting their price developments on both monitored stores.

5.4.1 Occurrence of store-based price differentiation

We collected sufficient data from AirFrance, Expedia, Kayak, and Opodo to proceed
with our analysis. Figure 5.3 shows the distribution of relative price differences be-
tween their (.de) desktop site and other stores. We found some price differences for
each store, though, for AirFrance and Expedia, these appear to be minor or incidental.
In contrast, the distributions of Opodo and Kayak show apparent favouritism.

Figure 5.3: Relative difference vs .de desktop site

Opodo: French site almost always more expensive. Even our data set pro-
vides a limited window, for Opodo, we find that prices on the French website are
typically substantially higher than on the German website (median: +14.2%, In-
terQuartile Range: +10.1%–+22.4%). Indeed, virtually always a lower price was of-
fered on the German website. In Opodo’s app, this effect is also present, but smaller
(median: +2.25%, IQR: +0.01%–+6.15%). Moreover, while outliers occur in either
direction, those favouring the German site over the app are quantitatively larger and
occur more often. This is confirmed when looking at a single item, e.g., Figure 5.4:
users of the French site pay, in this case, tens of euros more for the same ticket. On
the 22nd of June, this was even over e55. While lower prices do occasionally occur
on the French site, on the whole, our data set suggests Opodo customers are better
off using the German desktop site for booking.

Kayak: wild variations between stores. For Kayak, we find, on average, mobiles
get better prices. Prices on all stores vary; in-app prices are mostly slightly better
than on the desktop site (median: −4.3%, IQR: −8.0%–0.0%). However, wild outliers
occur in either direction. Lucky bookers will be 68% cheaper; unlucky bookers will
see more than double (over 150% higher) prices than on the desktop site. Kayak’s
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Figure 5.4: Opodo, .de vs. .fr, FRA – CDG

mobile site also offers better prices (median: −1.6%, IQR: −4.4%–0.0%). Outliers for
the mobile site are less wild, ranging from −20% to +15.7%. On the whole, the best
bet for low prices from Kayak is (by a small margin) their app. Its users might even
get lucky with a very low price but should be wary of expensive outliers.

5.4.2 Pattern and outlier analysis

To evaluate whether there are patterns in the found price differences, we construct a
heat map of these (Figure 5.5). We omit flights with less than 10% success in data
acquisition. Each box shows the relative difference of an item’s prices between two
stores, with time of data acquisition on the x-axis. A lacking box means our scrapers
acquired insufficient data; a light grey box means that both stores showed the same
price. All other boxes denote price differences. For visual clarity, all boxes with
data are marked with an edge. Extremes use the 50% colour to avoid letting outliers
dominate the colour space.

Using relative percentage differences instead of total prices provides a compact
view on the data set. At the same time, differences in higher-price trips do not
overshadow differences in low-fare trips. On the downside, relative differences result
into higher percentages for increases than for decreases.8 Hence, this view can provide
points of interest, but conclusions require further analysis. Below we discuss high-level
observations from this heatmap and indicate which needs further inspection.

Cross-vendor observations. Any cross-vendor effect manifests as a vertical effect
in the heatmap. This includes gaps in data acquisition. First, our data acquisition
failed to get data from any app from the 5th of June until the 8th of June. This shows
up in the heatmap as a vertical gap for all app comparisons. Secondly, other effects
besides gaps in data acquisition also occur vertically. An interesting find is that from
Figure 5.5, we can rule out taxes as a cause for the observed price differences between
.de and .fr sites. If taxes caused price differences, this effect would show up in all

8For example, a change from e10 to e15 is an increase of 50%, while from e15 to e10 is a decrease
of 33%.
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Figure 5.5: Overview of relative price differences (colours of extremes truncated to
+/−50%)

affected data points, translating to a vertical effect in the heatmap; no such effect is
present. This is further strengthened by observing that most Expedia .fr comparisons
show no price difference, except when the booking date is close to the departure date.

Vendor-specific observations. With respect to specific vendors, we observe sev-
eral effects in Figure 5.5. First of all, we see that the AirFrance .fr site seems to have
an almost-constant price increase over their .de site. This could relate to some type of
fee. Secondly, we see a wave pattern for the Opodo app indicating frequent switches
between higher and lower prices. We will consider both cases in more depth in the
next section.

Perspective on outliers. The heat map also provides more details about recorded
outliers. We note that outliers for Expedia (cf., Ex .fr in Figure 5.3) are grouped (i.e.,
on consecutive dates). We will investigate this case further to find the cause for
this pattern below. For AirFrance .fr, AirFrance app, and Opodo app, the fraction of
outliers is tiny. We ignore such single-point outliers, as these could be due to expected
errors given the nature of our experiment (see Section 5.2.2). Instead, we focus on
more consistent data.
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Figure 5.6: Opodo website vs. app, differences per item

5.4.3 Analysis of specific cases

Price differences flip frequently for Opodo. The wave pattern perceived in
Opodo’s part of the heat map spans over all four search queries, with the exception
of one item. We checked that these price differences are significant (p-value≤0.0001,
Wilcoxon signed-rank test).9 This raises the question of whether differences in item
prices follow a predictable pattern. Figure 5.6 shows the relative difference between
website and app prices for each item of each search query (SQ-A through SQ-D).
Breaks in the plot occur where data is lacking. For each query with multiple items,
we can find some items whose plots are similar, such as SQ-A: LH1 and LH2, SQ-B:
all plots, SQ-D: TP1 and TP2. On the other hand, each of these also has dissimilar
plots.

Note that none of these patterns re-occurs for items from different search queries.
We only have four queries, none of which show the same pattern. Data on more
queries would be needed to put any specific inference on a firm footing. Nevertheless,
a common thread already evident is that most items show a high frequency of price
swings – hence the wave. This suggests that, in general, checking prices on Opodo’s
other store can save around 10% of the item price.

Expedia: booking last minute? Try switching stores. In the heat map, some
items on expedia.fr have lower prices than their .de counterpart in the last third of
our observation window. Interestingly, the other four rows within this comparison
category show no differences. One example with differences is depicted in more detail
in Figure 5.7. Here, flight prices start to differ by a constant rate 15 days before de-
parture (except for two outliers). Customers on expedia.fr pay e13 (initially: −6.1%)
less than on expedia.de for these ‘last-minute’ tickets. The four search queries that
show no differences in the heat map all have later departure dates (August 1); for
these, we lack similar ‘last-minute’ data. As previously remarked, tax differences be-

9We use Wilcoxon signed-rank test, as our data set is not normally distributed.
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Figure 5.7: Expedia, .de vs. .fr, BRU – AMS. Data points under overlap denotes equal
prices on both stores

tween countries would show up in many more points than observed, so these cannot
explain the observed differences.

e1 or e5 higher prices on airfrance.fr. For two AirFrance flights, we have suffi-
cient data to compare prices between .de and .fr sites. Both flights showed exactly two
levels of price differences: e1 and e5. Interestingly, there is no consistent temporal
component to this (see Figure 5.8). For both flights, only prices over e65 are e5 more
expensive on the .fr sites. Unfortunately, our data set only contains sufficient data to
analyse two flights; the data we have is tantalising and merits a follow-up study.

5.5 Limitations

The experiment conducted in this chapter has several limitations. First, our validation
experiment only aims to show the framework’s viability to support price differentiation
studies. As such, we only extracted pricing data from a small number of stores of five
European vendors of flights. The experiment’s conclusions should not be extrapolated
to other vendors, and, given its scale, one should be careful extrapolating our results
to other (non-investigated) flights of the same vendors. Nevertheless, the experiment’s
results show that even a limited experiment with a proof-of-concept tool can already
provide indications of (trends in) price differentiation.

Second, our experiment used blank profiles (reset for every scraping job). Note
that this is a limitation of the experiment; the framework already supports using
different profiles (or even browsers) simply by instrumenting a scraper with the desired
characteristics as one of the desktop devices. With respect to how blank profiles affect
data: although no link between browsing history and flight pricing has yet been found,
browsing history is known to affect search results [MGE+12].

Third, our experimental setup only partially eliminates all possible confound-
ing factors. For example, store-specific measures such as user tracking (e.g., [Eck10;
LBB+20]), bot detection via fingerprinting [ESORICS19; VRR+20], behavioural met-
rics [IMC21], or A/B testing could still impact results. We argue that the impact of
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Figure 5.8: AirFrance, .de vs. .fr, FRA – CDG, AF1 top; AF2 bottom

any confounding measures, not specifically due to detecting the client as a bot, would
similarly affect genuine clients starting from the same position as our experiment. Bot
detection poses another potential source of confounding factors. Stores could employ
bot detection to prevent or thwart unwanted resellers. Specifically, they could block
bots, show bots different prices, or show fake or joke items. The last two measures
can thwart bots and may even allow the store to (significantly) profit from automated
resellers [Sch19]. Also, some of the observed differences could be caused by A/B test-
ing. To perform A/B testing, a store puts users into buckets on a random basis; these
users then retrieve prices according to their corresponding buckets. A/B testing is a
method for temporary use that should not lead to large discrepancies between plat-
forms over a period of 38 days. If not, such algorithms are likewise problematic as
pricing strategies that do not use A/B testing.

Lastly, any measurement we took from a store produced data potentially used
by this store for adjusting item prices. This phenomenon is known as the observer
effect, as the act of observing the system may cause it to change. However, given that
hundreds to thousands of users are active on an online store, our experiment should
have limited influence on a vendor’s pricing.
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5.6 Conclusions

In this work, we set out to explore the feasibility of detecting store-based price differen-
tiation. In contrast to previous price-differentiation studies, we focused on vendor-side
differences in pricing (that is, store-based pricing) and conducted a fully automated
study. Our experiment is based on a significantly larger amount of data than previous
works in this area. Studying store-based price differentiation requires eliminating or
mitigating confounding factors as well as gathering the same item from multiple stores.
To this end, we designed a framework to enable cross-device automated data collec-
tion from different stores. We implemented a proof-of-concept that uses Puppeteer
for automating desktop browsers and Appium plus UI Automator for automating
interaction with mobile devices.

We test our approach in a study of 5 vendors of flights across 15 stores, gath-
ering data for 38 days. We find evidence of price differentiation between stores for
about half of the data set. For some vendors, this seems incidental. For others, the
collected data is suggestive of deliberate price differentiation – sufficiently strong to
warrant a more detailed, in-depth study. Lastly, for some vendors, price differences
are fairly blatant. We found recurring price differences of about e50 between .de
and .fr stores of Opodo. This starkly contrasts data from all other investigated .de
and .fr sites, ruling out contextual factors such as tax differences. We also created
comparisons between websites, mobile apps, and mobile sites. We find that Opodo’s
app slightly disadvantages users compared to their desktop site. Kayak’s stores can
differ substantially in price; on average, their mobile stores (app/mobile site) offer
lower prices.

Future work. Our experiments show that a larger-scale study into store-based flight
pricing is warranted. This can be done in various dimensions. One such way is to
perform a deep dive into one vendor, gathering data on a significant fraction of their
flights. This could e.g. be done for Opodo. Another large-scale investigation is to
collect data from many more vendors to determine if there is an industry-wide trend
with respect to store-based pricing. Do note that these studies have different chal-
lenges: a vendor-specific investigation must take extra measures to reduce the impact
of its queries on pricing, while a multi-vendor study faces the challenge of maintaining
a plethora of vendor-specific data extractors. Another interesting direction related to
cross-vendor studies is to consider seller incentives. For example, in some cases, re-
sellers stimulate offering lower prices to mobile devices than those offered to desktop
clients [Boo23]. A future study could investigate to what extent such features are
used across different vendors.

In our experiment, we studied flight prices. Store-based price differentiation can,
of course, also occur for other types of items. Travel-industry-related rental items such
as hotel bookings or car rentals make interesting candidates. They also allow for fairly
easy item comparison. Moreover, these items also have limited availability and are
time-sensitive, which is likely to induce vendors to update their pricing. From there, it
is only a small step for vendors to consider tweaking prices for specific stores. Hannak
et al. [HSL+14] reported finding lower prices for hotel bookings on Apple devices than
on Android devices for one out of four vendors. Our framework facilitates performing
such studies at a larger scale, for more vendors and across more stores.
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In all of such price differentiation studies, data extraction remains a contentious
point due to server-side changes. On a conceptual level, a follow-up study is to
investigate how to make data extraction significantly more robust. Lastly, taking
a step back, there have been various studies into price differentiation focusing on
different aspects. Not all studies insulated their data collection from aspects found
to be influencing pricing in other studies. What is sorely needed is a taxonomy of
various potential influencing factors and a strategy for isolating them.
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Chapter 6

Case Study: Session Security from
Pre-login to Post-logout

Session management is a particularly delicate component of web applica-
tions, which might suffer from a range of severe security issues, including
impersonation attacks. Unfortunately, the scope and significance of prior
work on web session security in the wild are limited by the complexity
of the attack surface and the challenges of automating the login process
on existing websites. In this chapter, we fill this gap by proposing the
first comprehensive, large-scale web session security measurement based
on post-login data. Our analysis is comprehensive in that it deals with all
key aspects of web sessions, i.e., the login process, the logout process and
the authentication cookie handling. Our automated approach analysed an
extensive set of session management practices of over 6,000 sites where
login was successful and authentication cookies could be automatically de-
tected, uncovering a widespread adoption of insecure practices in the wild.

This chapter is based on the following publication:

Measuring Web Session Security at Scale. Stefano Calzavara, Hugo
Jonker, Benjamin Krumnow, and Alvise Rabitti. In Journal of Com-
puters & Security, DOI: 10.1016/j.cose.2021.102472, 2021, [CoSe21].
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6.1 – Introduction

6.1 Introduction

Web application security is a complex matter, with multiple facets and moving parts.
A particularly delicate component of most web applications is session management ,
where a user operating a client (browser) authenticates at a web application to request
access to security-sensitive functionality, e.g., a payment interface of an e-commerce
website. Web sessions are normally established upon successful verification of valid
access credentials (login) and implemented on top of authentication cookies. Unfor-
tunately, despite their apparent simplicity, web sessions can suffer from a wide range
of severe security flaws [CFS+17]. Insecure implementation practices in web sessions
may even lead to impersonation attacks, where the attacker uses the victim’s pass-
word or cookies to authenticate as the victim and get unconstrained access to their
account.

Web security studies aim to better understand causes for insecure practices; they
unveil faulty implementations and highlight misunderstood concepts [KB15; WSL+16].
However, web session security studies have been fairly limited so far. Analysing web
session security requires authenticated access to web applications, which is a difficult
process to automate (see Chapter 4). Thus, prior work on web session security re-
ported on either (i) small-scale precise measurements involving a significant amount
of manual effort [SPK16b; MFK16; CRB19], or (ii) large-scale measurements based
on unauthenticated access to web applications, which miss valuable information, e.g.,
the login and logout processes [BCF+15]. The only notable exception is a recent
paper, which analysed post-login web session security at scale, but only focused on
session hijacking enabled by cookie theft [DIP20]. This means that prior web secu-
rity studies are too small in terms of analysed sites [SPK16b; MFK16; CRB19], too
imprecise because carried out without performing authentication [BCF+15] or too
narrow because they only cover a limited set of web session security threats [DIP20];
we further discuss and compare against prior work in Section 6.8.

In the present chapter, we fill the gap in prior studies by presenting the first
comprehensive evaluation of web session security that is based on post-login data col-
lected through an automated large-scale measurement. Our analysis is comprehensive
because it deals with all key aspects of web sessions, i.e., the login process, the lo-
gout process and the authentication cookie handling. Note that all these parts of the
session management logic may be subject to vulnerabilities:

1. Web session security requires passwords to be protected against leakage over
HTTP and to be reasonably hard to guess. If passwords are not appropriately
protected against disclosure, impersonation attacks become trivial to perform.

2. Once a session is terminated by logging out, it should be invalidated at the
server-side to ensure that authentication cookies are not valid beyond their
intended expiration. Also, security-sensitive information stored at the client
should be removed to minimize the risk of privacy leakage.

3. Insecure cookie configurations can fatally undermine web session security. For
example, if authentication cookies are leaked in clear over HTTP, their theft
may enable impersonation attempts (session hijacking).

We build our work on top of the Shepherd framework (see Section 4.2) for au-
tomated post-login studies, which we extend to mechanise the logout process and
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include new traffic collection facilities. Our analysis is designed to be non-intrusive
and ethical: we leverage existing access credentials of popular sites from the public
BugMeNot1 database and we check compliance with security best practices without
actively mounting attacks when we might violate existing terms of services. Despite
these necessary limitations, our analysis is valuable because it identifies widespread
adoption of insecure session management practices in the wild. We arrive at this con-
clusion by analyzing data collected after authenticating to 6,124 top sites from the
Tranco list [LVT+19]. More concretely, our study shows that the risk of imperson-
ation attacks on the analysed sites is significant: for example, we identify 909 (15%)
sites where impersonation might be enabled by an insecure implementation of the
login process and 1,398 (23%) sites where impersonation might be enabled by the
lack of confidentiality of authentication cookies. In addition, we identify a number
of sites which implement the logout functionality insecurely: specifically, 469 (8%)
sites do not terminate sessions at the server upon logout, while 230 (4%) sites do not
remove security-sensitive information from the client after logout. All the vulnerabil-
ities reported in the present article have been responsibly disclosed to the respective
site operators.

Contributions. To sum up, we contribute as follows:

1. We use Shepherd (see Chapter 4) to create a data set of traffic and client-side
storage related to all phases of session security: logging in, post-login, logging
out. For this task, we extend to capture targeted parts of the HTTP traffic.
This enables Shepherd to make use of its understanding of the login / logout
processes during traffic collection and support further security analyses.

2. We review an extensive set of web session security threats, focusing on three
different angles: login security, post-login security and logout security. For
each threat, we identify automated testing techniques amenable for a large-scale
security measurement in the wild.

3. We apply these testing techniques to data collected from 6,124 sites of the Tranco
list [LVT+19] where Shepherd successfully logged in. We analyse the results to
shed light on the current state of session security on those sites, detecting a
widespread adoption of insecure practices.

Ethical considerations. The data collection process in this study relies on the
Shepherd framework. Likewise, the ethical standards from Section 4.1 apply to this
work.

In addition, our research uncovers vulnerabilities, which raises concerns regarding
the creation of such a sensitive data set. We take two precautions to reduce potential
negative effects that could be caused by our study. First, we deploy measures to
protect the data set against unauthorised access (encrypt hard drives and limit access
to responsible personnel). Second, most of the sites found to be vulnerable are not
named in our report. An exception are site operators that we explicitly mention for
illustrate real world cases (e.g., see Section 6.4.1). To reduce possible harm to these

1http://bugmenot.com
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Client Server

GET /index.html

Login form

POST /login.php
Body: u=alice&p=fruit

Set-Cookie: sid=4ff2d165a

GET /index.html
Cookie: sid=4ff2d165a

Welcome back, Alice!

Figure 6.1: Example of web session

sites, we reported found flaws to site operators under the guidelines for responsible
disclosure as stated by the OWASP foundation [Tea21].

Outline. In this chapter, we continue with providing background knowledge on ses-
sion security (Section 6.2). Afterwards, we describe our experiment in detail and
evaluate the representativeness our of data set (Section 6.3). For the analysis, we re-
port on login (Section 6.4), post-login (Section 6.5), and logout security (Section 6.6).
We further discuss the meaning of our findings for website security (Section 6.7) and
we contrast them with related work (Section 6.8). This is followed by concluding
remarks (Section 6.9).

6.2 Studying web session security

A web session is established when a user operating a client (normally a web browser)
provides valid access credentials to a web application by the submission of a login
form, which is sent to a remote endpoint (the form’s action) for verification. Normally,
upon a successful verification of the access credentials, the web application issues a
set of cookies which authenticate the user on the following HTTP requests [KM00],
e.g., because they store a unique session identifier bound to the user’s identity. Such
cookies are known as authentication cookies2 and are automatically sent by the client
to the web application which set them.

Figure 6.1 shows the typical establishment of a web session, where the user Alice
first logs in with password “fruit” and then remains authenticated by presenting an
authentication cookie sid, which uniquely identifies her session (4ff2d165a). Once

2This is interchangeable with the term session cookies in some other work. We avoid the use of
the latter term, since it can also be used to denote those cookies which are deleted when the browser
is closed.
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Alice has finished interacting with the web application, she can log out and move
back to an unauthenticated state (not shown in the figure). This makes her session
identifier invalid for future accesses.

6.2.1 Threat Model

We audit the security of web sessions against the traditional threats posed by web
attackers and network attackers, the standard attacker models of the web security
literature [ABL+10], which have been commonly used in previous web session security
studies, e.g., [CNH+13; ZJL+15; BCF+15; vAHS17; CFS+17; CFN+19; SRJ+19;
DIP20]. A web attacker is an unprivileged web user who operates a browser and has
control of a malicious website. A network attacker extends the capabilities of a web
attacker with the ability to inspect and arbitrarily modify the content of the HTTP
traffic exchanged between the client and the server, e.g., because the attacker has
control of the WiFi access point used by the client and operates from a man-in-the-
middle position. However, a network attacker cannot sniff or corrupt the content of
HTTPS traffic, assuming the adoption of robust cryptography and the deployment of
a trusted certificate on the server. In our analysis, we only focus on sites equipped with
certificates signed by a trusted certification authority according to a major commercial
browser (Google Chrome). We also assume perfect cryptography, in the sense that
our analysis focuses on session security, not cryptographic security of HTTPS. Note
that cryptographic weaknesses in HTTPS implementations are generally harder both
to identify and to exploit in practice [CFN+19].

Finally, for the specific case of logout security, we also consider a next user at-
tacker , who gains access to the client after the previous user has logged out of her
session. This attacker covers often overlooked threats related to sharing devices, such
as borrowing someone’s computer or using an Internet cafe. The next user attacker
has access to the same browser and resources as used by the victim. More specifically,
a website that does not clean up client-side storage upon logging out leaves behind
information in the form of cookies and localStorage items. Information in sessionStor-
age is safe, because sessionStorage is deleted when the user closes the corresponding
browser tab.

6.2.2 Web Defences

There are common defences to improve session security. A few of them are explained
in this section.

Cookie attributes and prefixes. To understand the security implications of cook-
ies, it is important to review their semantics. By default, cookies are only attached
to requests sent to the same host which set them. However, a host may also set
cookies for a parent domain by means of the Domain attribute, as long as the parent
domain does not occur in the Public Suffix List:3 these cookies, called domain cookies,
are shared across all the sub-domains of such domain. For instance, a.foo.com can
set a cookie with the Domain attribute set to foo.com, which would also be sent to
b.foo.com.

3Available at https://publicsuffix.org/
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Cookies are normally shared across all protocols and ports. For instance, cookies
set by a secure connection to https://www.foo.com are attached to insecure requests
to http://www.foo.com, i.e., they can potentially be stolen by network sniffing. To
improve their confidentiality guarantees, cookies can be marked with the Secure

attribute, which instructs browsers to communicate such cookies only over HTTPS
connections. Similarly, cookies can be shielded from JavaScript accesses by marking
them with the HttpOnly attribute, which mitigates the dangers coming from script
injection (XSS).

The lack of cookie isolation between protocols also implies that http://www.ex

ample.com can set cookies for https://www.example.com, i.e., cookies lack integrity
against network attackers [ZJL+15]. To avoid this, cookies can make use of the
security prefixes Secure- and Host-. Though the semantics of the two prefixes
is different, both of them require the cookie to be set over HTTPS connections, thus
providing cookie integrity.

HTTP Strict Transport Security (HSTS). HSTS is a security policy imple-
mented in all modern browsers, which allows hosts to require browsers to commu-
nicate with them only over HTTPS. Specifically, HTTP requests to HSTS hosts are
automatically upgraded to HTTPS by the browser before they are sent. This way,
site operators can assume that HTTP is banned and reduce the attack surface. Note
that HSTS provides better protection than a standard HTTPS deployment (without
HSTS), because HTTP communication is entirely forbidden, hence network attackers
cannot impersonate the (non-existing) HTTP version of the target site.

HSTS can be activated over HTTPS using the appropriate header, which must
specify a max-age attribute expressing the duration of protection. Moreover, the
header can set the includeSubDomains option, which extends the scope of HSTS to
all subdomains. Rather than activating HSTS via headers, hosts may request to be
included in the HSTS preload list of major web browsers,4 so that HSTS is activated
on them by default. HSTS can be deactivated by setting the max-age attribute to a
non-positive value.

6.3 Data collection

We now provide details about our data collection, where we use Shepherd (see Chap-
ter 4). We start by explaining our modifications and then describe the data collection
process. Finally, we zoom in on our data set and analyse its characteristics.

6.3.1 Enhancing Shepherd with a network traffic recorder

The standard version of Shepherd provides access to a website’s JavaScript, WebStor-
age items and cookies. However, it does not capture HTTP traffic, which is important
for web session security analyses; for example, HTTP headers provide useful informa-
tion about the adoption of defence mechanisms like HSTS. While capturing network
traffic could be accomplished just by adding a proxy, a simple proxy would fail to
account for Shepherd’s awareness of where in the login / logout process it is.

4Available at https://hstspreload.org/
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Our goal is to analyse traffic related to specific phases of session management.
Shepherd knows when each phase is reached and thus when traffic should be recorded.
We therefore embed a way for Shepherd to enrich the recorded traffic stream with
semantic information based on the selenium-wire package.5 This enables our analysis
to exactly target the various phases of session management, and opens the possibility
to correlate website interactions (e.g., triggering a button, submitting a form and so
on) with their corresponding network traffic.

In this project, we use this functionality in two ways. First, we let Shepherd
mark the beginning and the end of each action of the traditional session management
process. Second, we introduce marking for interaction steps, such as setting a marker
when submitting a form and when the page has stabilised after form submission. This
allows re-identification of traffic belonging to an action, which would be lost otherwise.
We apply this functionality for traffic reduction. For that, we select actions (e.g.,
identifying the login page, false login attempts, etc.) that produce irrelevant traffic
and remove them from our data set. We tested this in comparison to unfiltered traffic
recording and found a reduction of captured traffic in size of up to 65%.

6.3.2 Data collection process

Like in the original Shepherd paper, we extracted the credentials used to access sites
from BugMeNot,6 a website that provides crowd-sourced credentials for other sites.
We searched BugMeNot for credentials for 1 million most popular websites according
to the Tranco list [LVT+19],7 which aggregates the ranks from the lists provided by
Alexa, Umbrella, Majestic and Quantcast from 14/4/2020 to 13/5/2020. The Tranco
list is constructed to provide a more stable list of most popular websites, in contrast
to individual rankings [LVT+19]. This resulted in a list of credentials for 56,437
websites.

Data acquisition. We let Shepherd perform the following actions in sequence on
these sites:

connect→ identify login area→ log in→ verify→ visit subpages→ derive
authentication cookies → log out → perform security checks.

In addition to logging out and security tests, we included a step for deep scanning
websites. Our goal is to capture authentication cookies that are not immediately
set after logging in, or may only be set on subpages [MFK16]. For that, Shepherd
extracts URLs from anchor elements that are embedded into the landing page. It
first filters third party URLs and duplicates and then picks a random selection of
the remaining URLs. Shepherd limits its visits to a maximum of five subpages for
performance reasons. We consider a subpage to belong to the same site when its URL
shares the eTLD+18 of the site landing page.

5https://pypi.org/project/selenium-wire/
6http://bugmenot.com/
7Available at https://tranco-list.eu/list/VKQN/1000000
8eTLD+1 includes the eTLD (see https://developer.mozilla.org/en-US/docs/Glossary/eTLD)

and the next domain part.
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Table 6.1: Breakdown of the data collection process

action # sites out of perc.

Connected 53,602 56,437 95%
Login area detected 35,465 53,602 66%
Failed login 28,699 35,465 81%

– All credentials are invalid 19,102 28,699 67%
– CAPTCHA protects login 2,676 28,699 9%

Logged in 6,766 13,687 49%
– Authentication cookies identified 6,124 6,766 91%

Logged out 3,302 6,124 54%

Table 6.1 reports the number of sites reached for the different steps of the data ac-
quisition process, as well as the number of failures for some automatically detected fail-
ure cases with large impact. Shepherd’s performance in this chapter roughly matches
our first study, as presented in Section 4.4, leading to a success rate of 13%. Shep-
herd found a login area in 35,465 sites (66% of 53,602). Out of those, we found 19,102
sites where all the credentials from BugMeNot turned out to be invalid and 2,676
sites where the login process was protected by a CAPTCHA, hence not amenable for
automation. This leaves 13,687 sites where Shepherd had a chance to automate the
login process, which succeeded in 6,766 (49%) cases. For most of these cases, we were
able to successfully identify their authentication cookies as discussed below. In the
following, we restrict our security analysis to the 6,124 sites where login was successful
and Shepherd could identify the authentication cookies.

During the data acquisition steps, we captured all requests and responses, with
exception of the response body. This resulted in a data set of 86 GB. For each site, we
captured cookies, localStorage and sessionStorage in four situations: (1) before logging
in, (2) after verifying success of having logged in, (3) after visiting several pages while
logged in, and (4) after verifying success of having logged out. In addition, we keep
track of which credentials were successfully used to log in, and what URL led to
a login area. Once login is verified, we determine which cookies are authentication
cookies, that is, cookies without which the browser is no longer logged in. Shepherd’s
initial implementation relies on the work by Mundada et al. [MFK16] and Calzavara
et al. [CTB+14]. The worst case scenario for this approach is an exponential run time
with respect to the number of cookies. Therefore, we extended Shepherd to apply the
improved solution by Calzavara et al. [CTC+15], which runs in linear time on most
sites.

Significance and potential bias. With respect to our discussion concerning the
limitations of automated login approaches (cf., Section 4.4.1), any research relying on
such a data set should be checked for significance and biases.

To show that our data covers not just random sites from the tail of Tranco, but
also very popular sites, we report two interesting results. First, Figure 6.2 shows
the distribution of sites for which at least one set of credentials was acquired over
the Tranco Top 1M. The detection of invalid credentials is automatically done by
Shepherd’s “reasonably accurate” integrated detection routines (see Section 4.2.3 and
4.2.4). The figure shows that the most popular sites from Tranco (Top 100K) are
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Figure 6.2: Distribution of sites for which at least one set of credentials was acquired
over the Tranco Top 1M

Figure 6.3: Breakdown of successful logins by site popularity
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Figure 6.4: Relative frequency for all categories covering more than 2% of either our
data set or the Tranco data set. Categories with a difference of over two percentage
points between both sets are highlighted in bold

quite represented in BugMeNot. In contrast, Figure 6.3 depicts the distribution of
sites with successful logins. This confirms that the data is distributed over the entire
Top 1M, with more emphasis on the most popular sites and the first half of the Tranco
list.

Next, we investigate the skewness of our data set. Due to the restriction on sites
with a public login within our study, we expect an inherent bias. More specifically:
not all sites offer a login; such sites are inherently excluded from our study. More-
over, our credential source is crowd-sourced for the goal of avoiding login ‘nags’ –
sites that pester visitors to create a login and limit content available to non-logged in
users. We anticipate that this may cause certain types of sites to be underrepresented
(e.g., malicious sites), and others, where login nagging is common, to be overrepre-
sented. To gain an estimate of this skewness, we derive categories for sites where
Shepherd successfully logged in and compare it with categories of sites in the Tranco
list. Specifically, we use Symantec’s Review Database [Sym21] which puts sites into 86
categories.9 Unfortunately, access to Symantec’s API is restricted through rate-limits,
preventing us from sampling the entire Tranco 1M list. We circumvent this restriction
by creating a systematic sample of 50K sites (5% of the Tranco 1M list). We select
domains based on a fixed interval (20 ranks), starting from a random position in the
top 20 of the Tranco list.

Our results show that our Tranco sample contains sites from all 86 categories,
while the login data set covers 79 categories. Notably, missing categories in our data
set account for less than 0.1% of all sites. Figure 6.4 depicts the result for categories
that exceed a 2% threshold for both data sets. Seven of these categories, marked in
bold, differ by more than 2 percentage points between the sets. For these categories,

9https://sitereview.norton.com/#/category-descriptions
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we further discuss why these are over- or underrepresented in our login set:

• Sites requiring logging in by nature: Some sites can only be used in their
full potential when logging in. Unsurprisingly, we encounter such sites more
frequently in our data set. Sites categorised as Games or Newsgroups/Forums
are likely candidates that fit this description.

• Sites usually not shared by users: Our goal is to investigate the security of
legitimate sites targeted at genuine users. In our login data set, two types of sites
occur rarely but make up for significant portion in the Tranco list: Suspicious
and Placeholders. Since neither category brings value to users, these are less
relevant to our study. Moreover, they are also less relevant for genuine users
and thus such sites are expected to occur only infrequently in a crowd-sourced
data set. We find that this is indeed the case.

• Tendency in the BugMeNot database: Sites categorised as Technology/In-
ternet and Entertainment are overrepresented in our login data set (by ∼9 per-
centage points). We believe this is due to BugMeNot’s mission and audience
matching these types of sites particularly well.

• Sites excluded by BugMeNot: As prescribed in BugMeNot’s terms of use,10

sites that offer paid content may not be submitted. This applies to certain sites
in the Business/Economy category.

In conclusion, the prevalence of categories in our data set mostly matches (within
±2%) incidence in the Tranco list. Deviations over this threshold are limited in
number and small in size; we thus consider our data set to align sufficiently well with
the Tranco set.

In more detail: only 4 out of 86 categories are significantly overrepresented. This is
not surprising, as logins are not equally distributed over all categories. Finally, three
categories are underrepresented: Business/Economy, Suspicious, and Placeholders.
We consider the latter two less relevant for a security study, as neither are meant
to provide genuine service to users. In particular, Placeholders sites do not concern
real sites, but parked domains, search bait, etc. Similarly, Suspicious sites are sites
that seem to be attacking genuine sites or users, not genuine sites themselves. This
only leaves the Business/Economy category as underrepresented. The difference for
this category is still relatively small (2.8 percentage points). Moreover, despite being
underrepresented, it makes up for over 7.5% of our data set. Therefore, there is ample
data for this particular category in our data set.

6.4 Login security

The security of web sessions can be broken when the password used for establishing
the session is not appropriately protected. We consider two possible attack vectors,
which would enable unconstrained impersonation of the victim: password theft and
password brute-forcing enabled by insufficient password strength.

10http://bugmenot.com/terms.php
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6.4.1 Password theft

A number of insecure programming practices might lead to an improper disclosure of
passwords over HTTP. In particular, we focus on three prominent attack vectors:

1. If the action of the login form uses the HTTP protocol, the password is com-
municated in clear, hence even a passive network attacker who just sniffs the
network traffic might disclose it. We identified 755 (12%) sites suffering from
this vulnerability. Note that we implement this check on the actual login re-
quest available in our data set so as to minimize the number of false positives
and false negatives, e.g., when the login form is submitted via JavaScript.

2. If the login page is served over HTTP, it can be modified by a network attacker
so as to force password leakage, e.g., by changing the action of the login form to
HTTP or by injecting an inline script which sends the password to the attacker’s
website. We identified 901 (15%) sites suffering from this vulnerability.

3. If the password is communicated in the query string of a GET request, it might
become part of the URL of the landing page. This means that the password
could be leaked as part of the Referer header if the landing page loads content
over HTTP or from external sites. To spot such cases, we checked the Referer
header of all the requests made during the website crawl, looking for our pass-
word value. We identified 4 sites leaking passwords to third parties (with Google
servers being among the third parties in all cases) due to this vulnerability.

Overall, after removing overlaps between classes, we identified 909 (15%) sites
exposed to the risk of password theft through the discussed attack vectors. Note
that this number is dominated by the second case, i.e., login page served over HTTP.
Notwithstanding the significant increase of HTTPS adoption in the last few years,
insecurely served login pages remain a key factor of insecurity.

Two points here are worth mentioning about exploitation. First, modern browsers
might implement security checks which prevent the introduction or communication of
passwords in insecure contexts. However, such checks are not standardised and vary
between different browsers, hence we consider bad practices like (1) and (2) as security
issues. For example, we observed that while a recent version of Mozilla Firefox (80.0.1)
warns users when they fill a login form which is going to be submitted over HTTP, this
is not the case for a recent version of Google Chrome (85.0.4183). Moreover, a leakage
of secrets via the Referer header might be prevented by appropriate configuration of
the Referrer Policy header, which provides site operators with the ability of controlling
the use of the Referer header.11 However, due to our analysis methodology, we can
confirm that all 4 vulnerable sites in the third class leak passwords to external sites
via the Referer header.

Example: Chip PC. Chip PC Technologies (www.chippc.com) is a thin client
manufacturer hosting a website to advertise and sell computers. The website provides
access to a dashboard where customers can manage orders, warranties and licences.
While the website is served over HTTPS, the login form submits authentication cre-
dentials to portal.chippc.com over HTTP, hence even a passive network attacker

11https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
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can sniff passwords just by monitoring the HTTP traffic. This enables impersonation
attempts, e.g., the attacker can access the victim’s purchase history and steal her
product licences.

Example: World Wide Art Resource. World Wide Art Resource (www.wwar.c
om) is a website for artists and creatives who wish to publish their work, with optional
paid tiers providing different content hosting plans, exposure and sales commissions.
The website uses the GET method to communicate authentication credentials upon
login, while importing several libraries from google-analytics.com, consensu.org
and sharethis.com domains, in addition to some content from the affiliated website
www.absolutearts.com. All these different hosts may get access to the passwords of
logged in users through the Referer header of HTTP requests sent after login.

6.4.2 Password brute-forcing

Even if a password is securely transmitted from the client to the server, it can still be
potentially disclosed by a determined attacker if it does not satisfy minimal password
strength requirements. The French Data Protection Authority, CNIL, has issued rec-
ommendations for securing authentication. CNIL considers four cases, each with their
own password requirements:12 password only, password + account access restrictions,
password + additional authentication information, and two factor authentication. Of
these cases, our approach can only succeed in logging in for the first two, hence we
focus on them and observe that, even in the presence of additional measures such
as limiting the number of access attempts, CNIL recommends that the password
must contain at least 8 characters from at least 3 of following sets: lowercase letters,
uppercase letters, digits and special characters.

Unfortunately, there is no general automated way to detect which password re-
quirements are in place on a given site, since these are not necessarily explicit and can
be enforced in different ways. To deal with this problem, we rely on two observations:

1. Although we cannot say anything about general password requirements, we can
still check the password strength requirements on the password used to access
the web application under analysis, i.e., we can check whether our password
is weak or not. This is valuable information for our measurement, since we
did not create passwords ourselves, but rather used public passwords from the
BugMeNot database, which can be used as a signal of inappropriate password
requirements on existing sites.

2. HTML5 provides the maxlength attribute to enforce a maximal length for input
elements, hence we can inspect its value to assess whether passwords are forced
to be shorter than 8 characters. Moreover, HTML5 also supports the pattern

attribute to enforce that inputs match a given regular expression, which can also
be used to infer information about the general shape of accepted passwords.

By combining these two observations, we identified 5,347 (87%) sites using pass-
words which do not satisfy minimal password strength requirements. The very large
majority of our findings comes from the analysis of our own passwords, since the use

12https://www.cnil.fr/sites/default/files/atoms/files/recommandation_passwords_en.pdf
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Table 6.2: Login security results by site popularity

Site popularity ≤1K ≤10K ≤100K ≤1M

Successful logins 53 100% 430 100% 2,081 100% 6,124 100%

Password theft 0 0% 12 3% 149 7% 909 15%
– login form sent over HTTP 0 0% 8 2% 103 5% 755 12%
– login page served over HTTP 0 0% 10 2% 146 7% 901 15%
– password in query string 0 0% 1 0% 2 0% 4 0%

Password brute-forcing 42 79% 363 84% 1,783 86% 5,347 87%

of the maxlength and pattern attributes on password fields does not provide much
information. In particular, though we identified 884 sites making use of maxlength
and 25 sites making use of pattern, we only found 3 sites where maxlength was used
to limit a password field to less than 8 characters. The interesting point here is that
we are guaranteed that, for those sites, all passwords are weak.

While the use of weak passwords is a bad security practice in general, it does
not necessarily constitute an exploitable vulnerability. In particular, websites can
implement detection or prevention techniques against brute-forcing attempts, such
as locking accounts after a number of failed login attempts. We do not actively test
for protection against brute-forcing at scale, as this is ethically dubious at best. In
addition, it may violate a site’s terms of services and put too much workload on the
analysed web applications.

Example: Geeks for Geeks. Geeks for Geeks (www.geeksforgeeks.org) is a
popular portal offering articles on different technology-related topics, paid courses
and hiring help. We have been able to access this site by using a BugMeNot password
which is composed just by 4 lowercase letters. This implies that no meaningful pass-
word strength requirement is enforced on the website. This is concerning, because
the odds of brute-forcing such passwords are realistically high, even if some kind of
brute-force mitigation based on the frequency of failed attempts is put in place.

6.4.3 Analysis by popularity

Table 6.2 reports a breakdown of our analysis results by website popularity. The
table shows two interesting observations. A positive result is that the most popular
websites in our data set do not suffer from the risk of password theft, since no site in
the Top 1K leaks passwords in some way. However, the percentage of vulnerable sites
monotonically increases when less popular sites are considered, up to a considerable
amount (15%). This shows that the most popular sites have a more thorough HTTPS
deployment than less popular sites, at least for the purpose of the login process.

Unfortunately, we observe that the use of weak passwords is uniformly widespread
and does not significantly correlate with site popularity: the number of vulnerable
sites ranges from 79% to 87% in our popularity buckets. This might result from the
bias coming from the use of public passwords from the BugMeNot database, since it is
plausible that many security-critical sites with strong password requirements are not
included there. However, this does not undermine the significance of our finding: there
are many popular sites which do not enforce minimal password strength requirements
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in the wild. Considering the massive user base of these sites, particularly in the Top
10K bucket, this result is both surprising and concerning.

6.5 Post-login security

Even when users rely on strong passwords which are appropriately protected, ses-
sion security might be at harm due to the weak security guarantees of cookies in their
default configuration. We first consider two traditional attack vectors: session hijack-
ing , where the attacker impersonates the victim by stealing their cookies, and session
fixation, where the attacker impersonates the victim by forcing them to authenticate
using a set of attacker-controlled cookies. Finally, we focus on two different types of
cookie brute-forcing attacks.

6.5.1 Session hijacking via network sniffing

Session hijacking happens when the attacker steals the authentication cookies of the
victim and uses them to impersonate them at the target website. Recall that the
current design of cookies leaves them susceptible to theft by network attackers, since
cookies are normally shared between HTTP and HTTPS, hence potentially exposed
in clear over the network. To avoid this, site operators can mark cookies with the
Secure attribute, which restricts their scope to HTTPS. However, even cookies lacking
the Secure attribute might be protected against disclosure over HTTP, in particular
when the site uses HSTS to enforce the adoption of HTTPS at the client. We find a
cookie to have low confidentiality against a network attacker when it lacks the Secure
attribute and either of the following conditions holds true:

1. The server does not activate HSTS. In this case, the attacker can force an HTTP
request to the site from the victim’s browser and sniff the cookie in clear.

2. The cookie is set for a parent domain and the server activates HSTS without
the includeSubDomains option. In this case, the attacker can force an HTTP
request to a different subdomain of the site to sniff the cookie in clear, as HSTS
is only activated for the initial host.

Table 6.3: Confidentiality properties of authentication cookies

Host-only Domain

total 1,804 12,087
lacks Secure flag 1,300 4,347

– low confidentiality 1,060 4,138

Table 6.3 summarises the confidentiality properties of the authentication cookies
collected in our measurement. We observe that 59% and 34% of host-only and domain
cookies respectively have low confidentiality against network attackers. Notably, most
of the authentication cookies lacking the Secure attribute have low confidentiality,
which suggests that the current state of the HSTS deployment in the wild is far from
satisfying.
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We say that a site is vulnerable to session hijacking when all its session cookies
have low confidentiality, i.e., a network attacker can collect all information required
to obtain the authentication cookies and impersonate the victim. In our data set, we
identified 1,398 (23%) sites which are subject to this threat. Note that site operators
might use defence-in-depth techniques, e.g., browser fingerprinting, to detect stolen
session identifiers and terminate hijacked sessions. However, automating this analysis
at scale would pose significant technical challenges: for example, sites might keep
users authenticated and terminate sessions just when a security-sensitive operation
is attempted. We acknowledge this limitation and partially mitigate it by manually
confirming successful session hijacking attempts on a random subset of 10 vulnerable
sites, including the following.

Example: Sotheby’s. The popular auction house Sotheby’s runs a website (www.
sothebys.com) that, while redirecting HTTP requests to HTTPS, does not serve any
HSTS header, thus allowing requests to be sent over unencrypted connections. Since
none of the site’s authentication cookies is marked as Secure, a network attacker
can just sniff the first HTTP request sent to www.sothebys.com and gain access to
valid session cookies. Note that the attacker could even force the browser to send
such HTTP request by corrupting unrelated HTTP traffic received by the victim’s
browser.

6.5.2 Protecting against JavaScript cookie stealing

Web attackers may attempt session hijacking by stealing authentication cookies via
JavaScript, e.g., exploiting an XSS vulnerability. To mitigate this threat, site oper-
ators should apply the HttpOnly attribute to their authentication cookies. For the
same reasoning as in the previous section, we consider a website as potentially vulnera-
ble against session hijacking via JavaScript cookie stealing when all its authentication
cookies lack the HttpOnly attribute. We find out that out of 6,124 sites in our data
set, 2,484 (41%) sites do not set this attribute for any authentication cookie.

Our analysis identifies sites whose authentication cookies lack inherent protection.
Note that this lack of protection cannot be turned into an attack without a script
injection vulnerability. Nevertheless, it is relevant to analyse cookie protection itself,
as XSS is consistently among the most common web security vulnerabilities [OWA17];
furthermore, mitigation techniques like Content Security Policy fail to sufficiently
address XSS in practice: up to 94% of policies in the wild do not protect against
XSS [WSL+16].

Example: Techrepublic. Techrepublic (www.techrepublic.com) is an online news
site within the Tranco Top 2K. It uses one cookie for authentication, which is protected
against session hijacking attacks via the Secure cookie attribute and deployment of
HSTS. However, the cookies are not protected against access via JavaScript. This, by
itself, does not quite enable session hijacking yet – only scripts in first-party context
can access these cookies. Interestingly, Techrepublic includes several third parties in
their first-party context, allowing these parties to access user authentication cookies.
Finally, the lack of adequate protection of authentication cookies against JavaScript
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access means that protection against session hijacking is fully dependent upon a flaw-
less defence against XSS: any XSS flaw in the Techrepublic site can be leveraged to
steal authentication cookies.

6.5.3 Session fixation

Session fixation may happen when a website does not refresh the value of the authen-
tication cookies when the privilege level of the session changes, e.g., upon login. In
this case, the attacker can force a set of known authentication cookies from the target
site into the victim’s browser, so as to be able to impersonate the victim after the
victim authenticates at the target and gets privileged access to it. To force cookies
into the victim’s browser, a network attacker can forge HTTP responses from the
target site, thus abusing the lack of isolation between HTTP and HTTPS in cookie
storage to eventually achieve the same effect as session hijacking.

While refreshing the value of authentication cookies upon login is a best prac-
tice, one can also thwart session fixation by ensuring the integrity of session cookies.
Specifically, a cookie has high integrity against a network attacker when either of the
following conditions holds true:

1. The server activates HSTS with the includeSubDomains option. In this case,
the site forces the use of HTTPS on all the hosts which are allowed to set a
cookie for it, thus closing the door to network attacks.

2. The cookie name contains a security prefix ( Secure- or Host-), which means
the cookie can only be set and accessed over HTTPS.

We say that a site is vulnerable to session fixation when none of its session cookies
is refreshed upon login and, in addition, none of them has high integrity. Interest-
ingly, we found no authentication cookies making use of security prefixes in our data
set. This outcome is in line with the observations of a recent study by Calzavara et
al. [CFN+19], who found one site using cookie prefixes amongst 10K websites. We
identified 1,082 (18%) sites which do not refresh authentication cookies upon login,
including 1,011 (16%) sites which are deemed vulnerable to session fixation. The
71 sites which do not refresh authentication cookies, yet still are not vulnerable, all
ensure cookie integrity by means of HSTS.

Example: Adult Entertainment Sites. We identified multiple adult entertain-
ment sites vulnerable to session fixation attacks. In most cases, this comes from an
inappropriate management of the PHP session cookie PHPSESSID. The default PHP
session management does not account for logins, as the login logic is site specific.
While PHP cannot refresh session identifiers upon login automatically, it offers the
session regenerate id function to be invoked after login to prevent session fixa-
tion. It is concerning to find such vulnerabilities in adult entertainment sites, as a
successful attack might leak sensitive information.

6.5.4 Cookie brute-forcing

We now focus our attention on two dangerous brute-forcing attacks on cookie val-
ues. The first threat we consider comes from the use of predictable identifiers in
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session cookies. The risk of brute-forcing attacks may be restricted by rate limiting
requests from the same client, or the expiration time of a session, in particular server-
side session expiration. Unfortunately, the only way to test whether rate limiting
is present, is to exceed the number of allowed requests. We refrain from such an
unethical course. Testing server-side session expiration is also non-trivial. As shown
in Section 6.6.1, client-side authentication cookies may officially expire long before
the server-side session is removed. We are therefore left with considering to what
extent cookie value itself is brute-forceable. We use the OWASP recommendations
on session ID length,13 which recommends session identifiers which contain at least
128 bits of entropy. We evaluate this by concatenating all authentication cookies, and
computing the entropy of the resulting string. That is, we hold that, in these cases,
the attacker can brute-force all the information required to get access to the victim’s
session. Our crawl identified 1,981 (32%) sites which do not satisfy this security best
practice. The average value of entropy among the vulnerable sites is 92 bits, with a
standard deviation of 39 bits.

The second threat we consider comes from an infamously insecure practice used
for authentication cookie generation: computing the session identifier by applying
a potentially invertible function to the password. This allows an attacker who gets
access to a session identifier to recompute the password. This is a severe threat
as it enables account takeover (via the password change interface) and might lead
to impersonation on other services where the password is reused. In particular, we
focus on two popular yet now insecure hashing algorithms: MD5 and SHA1. To
identify these insecure practices, we compute the MD5 and SHA1 of the password
we used to authenticate, and we look for them in the session cookie values. Overall,
we identified 63 sites storing a weak hash of the password without salting inside a
authentication cookie. Failure to use salting in hashing password results in far greater
risk of offline/rainbow tables brute-forcing. We experimentally confirmed that 47
(75%) of these hashes can be trivially inverted into the correct password by using the
CrackStation14 rainbow tables free online service.

Example: DataLife Engine. We found 26 websites storing a weak MD5 hash of
the password inside a cookie called dle password, which is the authentication cookie
of the DataLife Engine content management system. This is particularly concerning,
because all sites built on top of DataLife Engine might improperly disclose passwords.
In particular, we identified that in 15 cases the dle password cookie could be sent
in clear over HTTP: in 12 cases because the website was served over HTTP, in 3
cases due to the lack of the Secure attribute on an HTTPS website without HSTS.
All these authentication cookies can be disclosed by network attackers and eventually
inverted into the victim’s password.

6.5.5 Analysis by popularity

Table 6.4 reports a breakdown of our analysis results by website popularity. The
key insight here is that there is no strong correlation between security and popular-
ity. In particular, the percentage of vulnerable sites in the Top 1K bucket is only

13https://owasp.org/www-community/vulnerabilities/Insufficient_Session-ID_Length
14https://crackstation.net/
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Table 6.4: Cookie security results by site popularity

Site popularity ≤1K ≤10K ≤100K ≤1M

Successful logins 53 100% 430 100% 2,081 100% 6,124 100%

Session hijacking via network sniffing 9 17% 42 10% 358 17% 1,398 23%
Session hijacking via JavaScript 29 55% 192 45% 888 43% 2,494 41%
Session fixation 6 11% 51 12% 312 15% 1,011 16%
Cookie brute-forcing 13 25% 100 23% 576 28% 2,044 33%

– weak session identifiers in cookies 13 25% 99 23% 564 27% 1,981 32%
– weak password hashes in cookies 0 0% 1 0% 12 1% 63 1%

slightly lower than the percentage of vulnerable sites in the full data set, for all the
vulnerabilities we considered.

We find this remarkable, because all the considered vulnerabilities are well-known
and have easy solutions, hence we expected site operators at major companies to be
aware of these problems and to be able to fix them. In retrospect, however, we see two
possible reasons why top sites exhibit more positive figures for login security rather
than for cookie security. First, understanding and enforcing login security is easier,
since the adoption of HTTPS already fixes the most severe vulnerabilities. Considered
how much HTTPS is getting traction, also thanks to the efforts by browser vendors,
one might argue that login insecurity has been naturally fixed by the evolution of the
web platform over the years. Moreover, based on our research experience, real-world
web applications are complex and developed using a number of different technologies.
This means that the session management logic is often spread through multiple au-
thentication cookies issued by different components and it might be hard to assess
the security of all of them.

6.6 Logout security

Most websites offer users the possibility to terminate sessions by logging out. Though
the logout process sounds simple in theory, there are a couple of implementation sub-
tleties which might introduce security flaws. In particular, websites should properly
implement both server-side and client-side session invalidation, as discussed in the
following. Server-side session invalidation ensures that terminated sessions are forgot-
ten by the server, i.e., presenting session cookies for those sessions should not enable
authenticated access anymore. Client-side session invalidation, instead, guarantees
that privacy-sensitive session information is removed from the browser upon session
termination.

6.6.1 Server-side session invalidation

The desired effect of a logout is that the session is no longer valid at the server
side. If this is not handled properly, an attacker that manages to acquire session
identifiers of incorrectly terminated sessions can still get authenticated access to the
website. Moreover, unnecessarily extended session validity make session identifiers
more vulnerable to the threat of brute-forcing.
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In general, checking whether a website has proper server-side session hygiene con-
sists of three steps: (1) login and keep cookies, (2) logout and (3) re-visit the site
with the previously stored cookies.

The timing between logging out and revisiting is important. In a properly imple-
mented session management system, server-side session cleanup should (at the latest)
coincide with the notification to the client that the session has terminated. However,
to account for sites sending a “session terminated” message in parallel with cleaning
up session data in their backend servers, we check server-side session invalidation at
three different times:

1. Immediately, that is: directly upon page stabilisation15 after a logout request
was sent by the browser. This is how an ideal session management implemen-
tation should work.

2. After 5 minutes. This time frame accounts for possible concurrency issues upon
session termination, e.g., the logout request needs to be propagated to multiple
replicated databases storing session information.

3. After 10 days. This time frame allows us to identify websites where sessions are
not invalidated within any reasonable threshold and are definitely at risk.

In the second case, we let Shepherd evaluate every minute if a session is still active.
This evaluations stops when the session turns out to be invalid or the five-minute mark
is reached. For the final test, Shepherd re-uses the cookie jar from the original login
and repeats the login verification step 10 days later.

Overall, we count 2,601 (79%) websites where session cookies were correctly inval-
idated directly after logout (see Table 6.6). In addition, we found 97 (3%) sites that
did not invalidate authentication cookies immediately, yet did so within five minutes.
This shows that some tolerance is useful in this kind of analysis. The remaining 604
(18%) sites did not invalidate authentication cookies upon logout within five minutes.
Of these, 469 (14%) sites also failed the third test: 10 days later, the session was still
valid at the server.

Example: Flattr. Flattr (www.flattr.com) is a micro-payment service in the
Tranco Top 10K. It enables users to make small (potentially recurring) donations
to individuals as a form of patronage. We found that Flattr’s authentication cookies
were still valid 10 days after logging out. This is unexpected, given the nature of the
site (micro-payments). Luckily, Flattr uses several protection measures that prevent
cookie stealing, which mitigates the impact of this vulnerability.

Example: Suedkurier. Suedkurier (suedkurier.de) is a German regional news-
paper with logins (free registration). Using the authentication cookies from the suc-
cessful login resulted in a logged in state, 10 days after logging out from that session.
Moreover, we found that Suedkurier’s session identifiers have low entropy. The com-
bination of low entropy and absent server-side invalidation significantly exacerbates
the threat of cookie brute-forcing attacks.

15A page is considered as stable, when all HTTP responses are fully loaded and the DOM has not
been updated for two seconds.

90

www.flattr.com
suedkurier.de


Chapter 6 – Case Study: Session Security from Pre-login to Post-logout

Table 6.5: PII left at client-side after logout.

cookiesnet cookiesloc localStorage

username
– regular username 105 109 14
– email address 13 14 16
password 2 2 0
credential⋆ 58 64 17
MD5 username
– regular username 2 2 0
– email 2 2 3
MD5 password 0 0 0
MD5 credential⋆ 6 7 0

cookiesnet : Cookies accessible by network attacker
cookiesloc : Cookies accessible by next user attacker
⋆ cases where username = password

6.6.2 Client-side session invalidation

Session invalidation on the client-side serves to avoid data leakage. For example, net-
work attackers can use the attacks from Section 6.5.1 to capture cookies left behind
on the client even after session termination. This may leak privacy-sensitive informa-
tion in case this is contained inside cookies, e.g., an email address. We also consider
threats posed by next user attackers with access to the same client of the victim, as
discussed in Section 6.2.1.

To evaluate proper session clean up, we search for personally identifiable infor-
mation (PII) in cookies and localStorage items that remain after logging out. In
particular, we look for username, email and password in localStorage and in cookie
values – both in plain text and hashed with MD5 or SHA1. Note that in our data
set, username and passwords sometimes coincide. Thus we cannot always distinguish
if the username or password was stored.

Our analysis identified 230 (7%) sites persisting PII in client-side storage after
logout. A breakdown of the results according to the different types of client-side
storage are shown in Table 6.5. Column cookiesnet counts cookies which are not
protected against network sniffing, hence can be accessed by both types of attackers
we consider. Column cookiesloc also includes cookies which are locally accessible
to the next user attacker alone, while column localStorage reports on localStorage
items. The table shows that in 186 of the 199 cases (94%), PII is stored in cookies
without protection against a network attacker. Similarly worrying, some sites store
passwords in cookies, and do not remove these after a logout. We manually verified
cases with passwords, and found that insecurity was typically obvious from the cookie
name (e.g., PASSWORD or passwd[207860]). Finally, we also observe that when PII is
stored, its value is rarely obscured by means of hashing.

We compare these numbers with PII stored during the login phase. We encoun-
tered 756 sites with PII in cookies, which were properly removed upon logout in 557
(74%) cases. We also checked use of localStorage: out of 199 sites storing PII in
localStorage, 151 (76%) sites properly cleaned up localStorage upon logout.
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Table 6.6: Session invalidation results by site popularity

≤1K ≤10K ≤100K ≤1M

logged out 15 100% 169 100% 975 100% 3,302 100%

server-side invalidation: 13 87% 137 81% 819 84% 2,833 86%
– immediately 11 73% 116 69% 734 75% 2,601 79%
– within 5 minutes 1 7% 7 4% 37 4% 97 3%
– 5 minutes – 10 days 1 8% 14 8% 48 6% 135 4%
– unknown, > 10 days 2 13% 32 19% 156 16% 469 14%

client-side left PII behind in: 3 20% 14 8% 78 8% 230 7%
– localStorage 1 7% 6 4% 26 3% 48 2%
– cookiesloc 2 13% 8 5% 60 6% 199 6%
– cookiesnet 2 13% 8 5% 56 6% 186 6%

Example: Drop APK. Our study revealed a file hoster within the Tranco Top
20K, Drop APK (dropapk.com), that keeps track of the username in a user’s cookie
jar. This cookie is not removed after logging out. For Drop APK, knowledge of the
username suffices to list all public files of a user (https://dropapk.to/users/{username}).
A next user attacker can exploit this to identify a previous user’s username on
DropAPK and browse through the public files the user stored on the service.

6.6.3 Analysis by popularity

Table 6.6 reports a breakdown of our analysis results by website popularity. Though
the number of sites where we performed our evaluation is relatively small, particularly
in the Top 1K bucket, we do not observe any significant correlation between security
and popularity. We identified sites incorrectly implementing server-side session termi-
nation in all popularity buckets, roughly with the same percentages. Similarly, errors
in client-side session invalidation are also fairly constant with respect to popularity
(ignoring the limited data for ≤1K).

Interestingly, in all popularity buckets, the next user attacker is only slightly more
powerful than the network attacker. This confirms that even top sites often overlook
the adoption of cookie protection mechanisms, even for privacy-sensitive cookies. This
is concerning, because we expected operators of top sites to be more familiar with the
semantics of cookies and their insecure default configuration.

6.7 Perspective

Our approach successfully logged in on 6,124 sites and logged out from 3,302 sites.
What we found was quite concerning, at all levels of the session management logic.
As to the login phase, we observed insecure connections for sending the login form
(15%) or receiving it (12%), passwords leaked to third parties due to being submitted
via GET instead of POST (4 sites), widespread (87%) allowance of weak passwords.
After login, we identified authentication cookies vulnerable to session hijacking (23%)
or accessible via JavaScript (41%), session fixation vulnerabilities (16%), weak session
identifiers (32%) and invertible password hashes stored in cookies (47 sites). Finally,
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after logout, we found sessions still not invalidated even after 10 days (8%), and
failures to purge PII-containing session data from local session storage (8%).

Despite the bias coming from the analysis of sites for which valid access credentials
can be found in a public database like BugMeNot, our results paint a troubling picture
of the current state of the Web, because most of sites we analysed are unquestionably
popular services ranking in the Tranco Top 100K [LVT+19]. Although all the vulner-
abilities we identified are relatively well known to web security experts, they are not
necessarily easy to deal with and we recommend actions at many different layers to
improve on the current state of affairs.

The first observation we make is that the login process is arguably the easiest
part to secure of the session management logic. Security-savvy web users can largely
mitigate the dangers coming from insecure login pages. In particular, users can lever-
age password managers to generate strong passwords even for sites which accept weak
passwords, and they can install popular browser extensions like HTTPS Everywhere16

to force the adoption of HTTPS even on sites which do not deploy HSTS. We observe
that browser vendors can play a major role to improve login security and they are
already taking actions in this direction. For example, the most recent versions of
Google Chrome warn users when passwords are communicated in clear over HTTP
and most modern browsers already ship an integrated password manager. We think
and hope that by further pushing these actions it will be possible to rule out insecure
logins from the Web within a reasonable time frame.

Unfortunately, despite their apparent simplicity, web session security issues oc-
curring after login are much harder to fix. There are several reasons for this. First,
cookies are opaque to both web users and browser vendors, so detecting authentica-
tion cookies to analyse (and automatically improve) their security guarantees requires
custom heuristics [CTC+15]. In particular, the most effective heuristics operate on-
line (via testing) and are not straightforward to implement in commercial browsers
without sacrificing performance or compatibility with existing web applications. In
principle, one could try to experiment with safe defaults, e.g., automatically promote
all cookies to Secure, however such forms of client-side protection can break existing
websites [BCF+15]. In the end, we believe that secure session management crucially
relies on the intervention of site operators, i.e., browser vendors and web users are
limited in their range of actions. Automated security scanners like our extension
of Shepherd are thus an important tool to improve the current state of web session
security.

6.8 Trends and comparison with related work

Web session security is a wide research area, whose key contributions were summarised
in a relatively recent survey [CFS+17]. Here, we discuss selected prior work which is
most closely related to ours, and we describe trends based on previously conducted
session security evaluations.

16https://www.eff.org/https-everywhere
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Table 6.7: Comparison of post-login studies investigating aspects of session security

[MFK16] [DIP20] this work

logging in stats
– login manual automated automated
– # of sites approached 149 1.6M 53.6K
– # of successful logins 149 25.2K 6.1K

login security
– password theft – – ✓
– password brute-forcing – – ✓

post-login security
– session hijacking via network sniffing ✓ ✓ ✓
– session hijacking via JavaScript ✓ ✓ ✓
– session fixation – – ✓
– cookie brute-forcing ✓ – ✓

logout security
– server-sided session invalidation ✓ – ✓
– session data clean-up ✓ – ✓

privacy
– personal data leakage – ✓ –

6.8.1 Comparison with closely related work

Only two previous studies assess web session security after logging in with an semi-
automated or automated approach: a first study by Mundada et al [MFK16], and a
second study by Drakonakis et al. [DIP20]. Table 6.7 compares the aspects investi-
gated by these studies and ours. The study by Mundada et al. [MFK16] uses a manual
login approach; users carry out the login process, while the security assessment is au-
tomated. Due to the manual login process, their corpus is much smaller than either
Drakonakis et al.’s work, or ours: only 149 sites have been analysed. Drakonakis et
al.’s study relies on account creation and logging in with SSO. This approach to auto-
matically logging in has a low success rate. They compensate for the low success rate
by attempting logins on the largest number of sites of all three studies, i.e., around
1.6M sites.

With respect to security analyses, there are several noteworthy differences be-
tween these studies. The overlap between the security assessment of Drakonakis et
al. and our work concerns session hijacking via network sniffing and protection against
JavaScript cookie stealing. Though there is some overlap between Mundada et al.’s
work and our security analysis in terms of threats, there are significant differences
with our work. Their work primarily focuses upon automated detection of session
cookies, rather than measuring web session security at scale (they only focus on 149
sites, due to limited login automation). As such, they do not evaluate login security
and session fixation.

Other studies focused on specific web session security problems. For example,
session hijacking has been studied against different threat models, including web at-
tackers [NMY+11], network attackers [SPK16b] and both [BCF+15]. Session fixation
also got some attention by the research community, particularly with the design of
possible defence mechanisms [JBS+11; dRND+12]. In more recent work, Calzavara
et al. proposed black-box testing strategies to identify security flaws in web sessions,
including session hijacking and session fixation [CRB19]. However, the experimental
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analyses in all these papers are either small-scale (in the order of tens of sites) or based
on data collected without logging in, which limits the analysis surface and requires one
to come up with unreliable heuristics for authentication cookie detection [CTC+15].

The only research study on login security on the Web is due to Van Acker et
al. [vAHS17]. They also discuss bad practices which enable exploitation by network
attackers, e.g., login pages served over HTTP or sending the password in clear. How-
ever, their analysis methodology is different from ours, since they collect login forms
by inspecting the HTML rather than by dynamically monitoring form submissions,
which is generally more precise. For example, dynamic monitoring naturally covers
the case of form submission via JavaScript, which was not handled in [vAHS17].

Compared to the security of login pages, more attention was given to the creation
of passwords which are resilient to brute-forcing attacks [HA12; SBC+15; SKD+16;
SW19].

In our work, we base our analysis on standard recommendations from CNIL, which
appear to be widespread based on anecdotal evidence. For example, the popular
LastPass17 password manager generates passwords which follow the CNIL password
strength requirements in its default configuration.

6.8.2 Trends in adoption of security measures

In the last decade, several studies have presented data on the current state of selected
aspects of session security. Approach, measurements taken, and interpretation all
vary significantly between these studies. Nevertheless, there is some overlap in the
underlying security measures they sampled. This makes it possible to determine
adoption trends in the last decade. Table 6.8 lists findings from studies on session
security aspects until 2022. The general finding is that adoption rates for these simple
server-side security measures are slowly increasing, though still far from ubiquitous.
This section continues with a discussion of trends for specific measures and the findings
of our study in Chapter 6.

Adoption of the HttpOnly cookie attribute. Data on the adoption of the
HttpOnly cookie attribute has been reported in [SPK16b; MFK16; DIP20; ZE10;
NMY+11; CUT+21; RCW+22]. Since the reported numbers vary with each study’s
data set, these should be considered as a rough indicator for adoption. Reports before
2016 point to a low adoption rate between 22% and 63% at most. In comparison, later
studies indicate an increase to a rate between 56% and 77% in a best-case scenario.

Adoption of the Secure cookie attribute. Multiple reports [BCF+15; BSB+12;
MFK16; DIP20; CUT+21; RCW+22] provide data on the adoption of the Secure

cookie attribute. As these reports differ in how they report results (e.g., for partial
or all cookies for the entire site), they are not directly comparable. Nevertheless, the
overall trend is clearly upwards, from a low of 45% in 2015 [BCF+15] to a vastly
improved – but still disconcertingly low – 59% in our work. Do note that we find
susceptibility to session hijacking significantly lower at 23%. This is due to websites
that deploy the Secure cookie attribute to some (but not all) authentication cookies
and due to the deployment of other security measures, such as HSTS.

17https://www.lastpass.com
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Table 6.8: Trends in adoption of security measures (in % of sites)

year #sites logs in cookie attributes invalidation

HttpOnly Secure HSTS server client

2010, [ZE10] 50 ✓ 48% – – – –
2011, [NMY+11] 419K – 22% – – – –
2012, [BSB+12] 64 ✓ – 48% – 69% –
2015, [KB15] 1.1M – – – 1% – –
2015, [BCF+15]1

– 2014, from [CTB+14] 70 ✓ 63% 8% – – –
– 2015 #1 1K – 28% 5% – – –
– 2015 #2 ≤100 ✓ 38% 20% – – –
2016, [SPK16b] 26 ✓ 62% – – – 47%
2016, [MFK16] 149 ✓ 68% 57% 257% 50% 91%
2016, [SKP16] 22K – – – 11% – –
2019, [DIP20] 25K ✓ 77% 57% 258% – –
2020, [CoSe21] (our work) 6K ✓ 59% 159% 1,263% 79% 93%
2021, [CUT+21] 15K – 56% 45% 243% – –
2022, [RCW+22] 10K – 31% 29% 245% – –

1: Numbers are reported in cookies and not sites
2: Numbers apply only to sites without protection of the Secure cookie attribute

Adoption of HTTP Strict Transport Security. Previous reports on the adop-
tion of HSTS show an overall small adoption: 1% of sites found by Kranch and
Bonneau [KB15] in 2015 and 11% by Sivakorn et al. [SKP16] in 2016. Thankfully,
adoption rates have picked up in recent years, culminating in a 63% adoption rate in
our study. Nevertheless, all studies that investigated HSTS consistently found that
lack of a Secure cookie attribute is only rarely mitigated by HSTS.

Server-side session invalidation. To the best of our knowledge, there are only
two prior studies providing data on session invalidation, the study by Bursztein et
al. [BSB+12] and the study by Mundada et al. [MFK16]. Both studies have limited
sample size: 64 sites and 149 sites, respectively. As such, we cannot extrapolate from
these studies, but we do note that a lack of server-side invalidation frequently occurred
in either study. Our results suggests that the trend is improving, though we still find
every fifth site failing to properly invalidate authentication cookies on the server-side
following logout.

Session data clean up after logging out. Sivakorn et al. [SPK16b] conducted
an in-depth study for privacy leakage on a small number of websites. As such, they
evaluated if various privacy leaks even occur after logging out. They found that 47% of
the assessed sites delete cookies holding PII. Mundada et al. [MFK16] also performed
tests for client-side cleanups. In contrast, they looked for authentication cookies that
remain on the client-side after logging out. In their study, 91% of sites removed such
cookies. Our study shows that this issue has further decreased.
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6.9 Conclusions

We set out to investigate the current state of web session security in the wild, by per-
forming a comprehensive session security analysis based on post-login data collected
at a large scale. We used the Shepherd framework for post-login studies to automate
logins, and extended it to handle logouts and capture traffic for further analysis. We
acquired the needed credentials from a crowd-sourced repository (BugMeNot). We
analysed security of the login process, security of the session (and its cookies), and
security of the logout process. This includes an analysis of password strength of ac-
cepted passwords in practice, and the first (to the best of our knowledge) large-scale
analysis of session invalidation.

As future work, we plan to further improve the automation of the logout process
based on the data collected in the present study. We also want to further extend the
scale of our analysis by integrating support for SSO, which would allow us to collect
information from sites which are not included in BugMeNot. Finally, we would like
to investigate how to extend our security analysis to other attackers, such as web
attackers, without biasing the results towards overly conservative assumptions, e.g.,
that all web applications might suffer from XSS or other script injections.
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Chapter 7

Specific Detection of Web Bots

Web bots are used to automate client interactions with websites, which
facilitates large-scale web measurements. At the same time, they allow to
automate attacks, which poses a threat to online services. As a defence,
websites may employ web bot detection. When they do, their response to a
bot may differ from responses to regular browsers. The discrimination can
result in deviating content, restriction of resources or even the exclusion
of a bot from a website. This places strict restrictions upon studies: the
more bot detection takes place, the more results must be manually verified
to confirm the bot’s findings.

To investigate the extent to which bot detection occurs, we reverse-
analysed commercial bot detection. We found that in part, bot detection
relies on the values of browser properties and the presence of certain ob-
jects in the browser’s DOM model. This part strongly resembles browser
fingerprinting. We leveraged this for a generic approach to detect web bot
detection: we identify what part of the browser fingerprint of a web bot
uniquely identifies it as a web bot by contrasting its fingerprint with those
of regular browsers. This leads to the fingerprint surface of a web bot. Any
website accessing the fingerprint surface is then accessing a part unique to
bots, and thus engaging in bot detection.

We provide a characterisation of the fingerprint surface of 14 web bots.
We show that the vast majority of these frameworks are uniquely identi-
fiable through well-known fingerprinting techniques. We design a scanner
to detect web bot detection based on the reverse analysis, augmented with
the found fingerprint surfaces. In a scan of the Alexa Top 1 Million, we
find that 12.8% of websites show indications of web bot detection.

This chapter is based on the following publication:

Fingerprint Surface-Based Detection of Web Bot Detectors. Hugo Jonker,
Benjamin Krumnow, and Gabry Vlot. In Proc. 24th European Symposium
on Research in Computer Security (ESORICS’19), DOI: 10.1007/978-3-
030-29962-0 28, 2019, [ESORICS19].
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7.1 – Introduction

7.1 Introduction

Web bots may be used for benign purposes, such as search engine indexing or research
into the prevalence of malware. They may also be used for more nefarious purposes,
such as comment spam, stealing content, or ad fraud. Benign websites may wish
to protect themselves from such nefarious dealings, while malicious websites (e.g.,
search engine spammers) may want to avoid detection. To that end, both will deploy
a variety of measures to deter web bots.

There is a wide variety of measures to counter bots, from simple countermeasures
such as rate limiting to complex, such as behavioural detection (mouse movements,
typing rates, etc.). The more different a web bot is, the simpler the measures needed
to detect it. However, modern web bots such as Selenium allow a bot to automate the
use of a regular browser. Such a web bot thus more closely resembles a regular browser.
To determine whether the visitor is a web bot may still be possible, but requires more
information about the client side. Interestingly, more advanced countermeasures allow
a website to respond more subtly. Where rate limiting will typically block a visitor,
a more advanced countermeasure may (for example) omit certain elements from the
returned page.

A downside of detection routines is that they affect benign web bots as much as
malicious web bots. Thus, it is not clear whether a web bot ‘sees’ the same website
as a normal user would. In fact, it is known that automated browsing may result in
differences from regular browsing (e.g., [WD05; WSV11; ITK+16]). Currently, the
extent of this effect is not known. Nevertheless, most studies employing web bots
assume that their results reflect what a regular browser would encounter. Thus, the
validity of such studies is suspect.

In this work, we investigate the extent to which such studies may be affected. A
website can only tailor its pages to a web bot, if it detects that the visitor is indeed
a web bot. Therefore, studies should treat websites employing web bot detection
differently from sites without bot detection. This raises the question of how to detect
web bots. We have not encountered any studies focusing exclusively on detecting
whether a site uses web bot detection.

Contributions. In this chapter, we devise a generic approach to detecting web bot
detection, which leads to the following four main contributions.

• We conduct a reverse analysis of a commercial client-side web bot detector.
From this, we observe that specific elements of a web bot’s browser fingerprint
are sufficient to lead to a positive conclusion about a script. This, in turn,
suggests that the browser fingerprint of web bots is distinguishable from the
browser fingerprint of regular browsers – and that (some of) these differences
are used to detect web bots.

• We create a setup to capture all common differences of web bots detectable
via browser fingerprint. We call this collection of fingerprint elements that
distinguish a web bot from a regular browser the fingerprint surface, analogous
to Torres et al. [TJM15]. We use our setup to determine the fingerprint surface
of 14 popular web bots.
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• We design a bot-detection scanner and scan the Alexa Top 1 million for fingerprint-
based web bot detection. To the best of our knowledge, we are the first to assess
the prevalence of bot detection in the wild.

• Finally, we provide a qualitative investigation of whether websites tailor content
to web bots.

Availability. The results of the web bot fingerprint surfaces and the source code
used for our measuring the prevalence of web bot detectors are publicly available for
download from [ART-ESORICS19].

Outline. In the following, we conduct a reverse analysis of a commercial bot detec-
tor (Section 7.2). We use our insights from this analysis to develop a methodology
for building a bot’s fingerprint surface (Section 7.3) and apply it to popular automa-
tion frameworks (Section 7.4). Based on the identified properties that appear only
in automation frameworks, we visit one million websites to detect client-side bot de-
tection (Section 7.5). Then, we test the effect of bot detection against an automated
headless and native browser (Section 7.6). Finally, we conclude our investigation of
fingerprint-based bot detection (Section 7.7).

7.2 Reverse analysis of a commercial web bot de-
tector

In our search for sites that engage in web bot detection, we encountered a site that
allegedly can detect and block Selenium-based visitors [Wei15]. We verified that this
site indeed blocks Selenium-based visitors by visiting the site with user- and Selenium-
ChromeDriver-driven browsers systematically. We investigated JavaScript files used
on this site and analysed the page’s traffic. The traffic analysis showed that several
communications back to the host contained references to ‘distil’, e.g., in file names
(distil r captcha util.js) or in headers (X-Distil-Ajax: ...). This was due
to two of the scripts originating from Distil Networks, a company specialised in web
bot detection, and thus the likely cause of the observed behaviour. We manually
de-obfuscated these scripts by using a code beautifier and translating hex-encoded
strings, after which we could follow paths through the code. This allowed us to
identify a script that provided the following three main functionalities:

Behaviour-based web bot detection. We found multiple event handlers added
to JavaScript interaction events. These cover mobile and desktop-specific actions,
such as clicks, mouse movements, a device’s orientation, motion, keyboard and touch
events.

Code injection routines. The traffic analysis revealed frequent communication
with the first party server. Within this traffic we found fingerprint information and
results of web bot detection. This would allow a server to carry out additional server-
side bot detection. We further identified routines that enable the server to inject code
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1 // Example of original , obfuscated code:
2 // array containing literals used throughout the source code
3 var _ac = ["\x72\x75\x6e\x46\x6f\x6e\x74\x73",
4 "\x70\x69\x78\x65\x6c\x44\x65\x70\x74\x68", .....]
5
6 // Example of de -obfuscation
7 // obfuscated: window[_ac [327]][ _ac [635]][ _ac [35]]( _ac [436])
8 // de -obfuscated:
9 window[document ]["documentElement"]["getAttribute"]("selenium")

10
11 // Example of de -obfuscated and beautified code
12 sed: function () {
13 var t;
14 t = window["$cdc_asdjflasutopfhvcZLmcfl_"] || \
15 document["$cdc_asdjflasutopfhvcZLmcfl_"] ? "1" : "0";
16
17 var e;
18 e = null != window["document"]["documentElement"]\
19 ["getAttribute"]("webdriver") ? "1" : "0";
20 ...
21 }

Listing 7.1: Examples from bot-detection script.

in response to a positive identification. In our test, this resulted in a captcha being
included on the page.

DOM properties-based web bot detection. Lastly, we found that multiple
built-in objects and functions are accessed via JavaScript (e.g., see Listing 7.1).
Some of the properties accessed thusly are commonly used by fingerprinters [TJM15].
We also found code to determine the existence of specific bot-only properties, such
as the property document.$cdc asdjflasutopfhvcZLmcfl (a property specific to
the ChromeDriver). Keys from the window and document objects were acquired
by Distil. Moreover, a list of all supported mime types was also collected (via
navigator.MimeTypes).

Moreover, we investigated whether changing the name of this specific property
affects bot detection. We modified ChromeDriver to change this property’s name and
used the modified driver to access the site in question 30 times. With the regular
ChromeDriver, we always received “bot detected” warnings from the second visit
onwards. With the modified ChromeDriver, we remained undetected.

7.3 A generic approach to detecting web bot detec-
tion

From the reverse analysis, we learned that part of Distil’s bot detection is based on
checking the visitor’s browser for properties. Some of these properties are commonly
used in fingerprinting, others are unique to bots. Moreover, in testing with a mod-
ified ChromeDriver, we found that the detection routines were successfully deceived
by only changing one property. This implied that at least some detection routines
used by Distil fully rely on specifics of the browser fingerprint. Moreover, both FPDe-
tective [AJN+13] and OpenWPM [EN16] checked whether a website accesses specific
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browser properties. By combining these findings, we develop an approach to detecting
Distil-alike bot-detection on websites.

To turn this into a more generic approach that will also detect unknown scripts,
we expand what properties we will scan for. The properties that are used to detect
a web bot will vary from one web bot to another. To detect web bot detection for a
specific web bot, we first determine its fingerprint surface and then incorporate those
properties that are in its fingerprint surface into a dedicated scanner. Remark that
properties and variables that are unique to the fingerprint of a specific web bot serve
no purpose on a website, unless the website is visited by that specific web bot and
the site aims to change its behaviour when that occurs. Therefore, we hold that if a
portion of a fingerprint is unique to a web bot, any site that checks for or operates
on that portion is trying to detect that web bot.

With that in mind, we designed and developed a scanner based on the discov-
ered fingerprint surfaces. This scanner thus allows us to scan an unknown site and
determine if it is using fingerprint-based web bot detection.

Note that this design does not incorporate stealth features to hide its (web bot)
nature from visited sites. To the best of our knowledge, this is the first study to
investigate the scale of client-side web bot detection. As such, we expect web bot
detection to focus on other effects than hiding its presence. Therefore, we nevertheless
deemed this approach sufficient for a first approximation on the scope of client-side
web bot detection.

7.4 Fingerprint surface of web bots

A fingerprint surface is that part of a browser fingerprint that distinguishes a specific
browser or web bot from any other. A naive approach to determining a fingerprint
surface is then to test a gathered browser fingerprint against all other fingerprints.
However, layout engine and JavaScript engine tend to be reused by browsers. The
fingerprints of browsers that use the same engines will have large overlap. Thus,
to determine the fingerprint surface, it suffices to only explore the differences com-
pared to browsers with the same engines. For example: Chrome and Chromium
contain the property document.$cdc asdjflasutopfhvcZLmcfl only when used via
ChromeDriver, otherwise not.

Thus, we classify browsers and web bots into browser families, according to the
used engines. We then gathered the fingerprint of a bot-driven browser, and compared
it with regular browsers from the same family. Only properties that are unique to
the web bot in this comparison are part of its fingerprint surface. Interestingly, we
found that every browser that uses the same rendering engine, also uses the same
JavaScript engine. Thus, for the examined browsers, no fingerprint differences can
arise from differences in JavaScript engine.

We set up a website to collect the various fingerprints. To that end, we extended
fingerprintJS2,1 a well-known open source browser fingerprinting package, as discussed
below. We visited this site with a wide variety of user- and bot-driven browsers to
determine the fingerprint surfaces of 14 web bots.

1https://github.com/Valve/fingerprintjs2
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browser engine regular browser automated browser

Webkit Safari PhantomJS,
Chrome (v1–v26) Selenium + WebDriver

Blink Chrome (v27+) Puppeteer + Chrome
Chromium NightmareJS
Opera (v15+) Selenium IDE
Edge (from mid-2019) Selenium + WebDriver

Gecko Firefox Selenium IDE,
Selenium + WebDriver

Trident Internet Explorer Selenium + WebDriver

EdgeHTML Edge (till mid-2019) Selenium + WebDriver

Table 7.1: Classification of browsers based upon browser engine

7.4.1 Determining the browser engine of web bots

In our classification, we omitted bot frameworks that do not use a complete rendering
engine to build the DOM tree (see HTTP engine interfaces in Section 2.2). We
included frameworks popular amongst developers and/or in literature at the time of
writing, specifically:

• PhantomJS: a custom (headless) browser based on WebKit, the layout engine of
Safari. PhantomJS is included as it is used in multiple academic studies, even
though its development has been suspended.2

• NightmareJS: a high-level browser automation library using Electron3 as a
browser. It allows to be run in headless mode or with a graphical interface.

• Selenium and WebDriver: a remote control for web browsers. There are specific
drivers for each of the major browsers.

• Selenium IDE: Selenium available as plugin for Firefox and Chrome.

• Puppeteer: a NodeJS library to control Chrome and Chromium browsers via
CDP. CDP allows to instrument Blink-based browsers.

This leads to the classification shown in Table 7.1. Browsers based on different browser
engines use different rendering and JavaScript engines, which will lead to differences
in their browser fingerprints. However, all browsers within one browser engine use
the same rendering and JavaScript engines. This means their browser fingerprints
are comparable: differences in these fingerprints can only originate from the browsers
themselves, not from the underlying engines.

2https://github.com/ariya/phantomjs/issues/15344
3Electron is a framework for making stand-alone apps using web technologies. It relies on

Chromium and Node.js.
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7.4.2 Determining the fingerprint surface

We use the above classification of browser families to determine the fingerprint surface
of the listed web bots. To determine the complete fingerprint surface is infeasible, as
already noted by Nikiforakis et al. [NKJ+13] and Torres et al. [TJM15]. To wit: a
fingerprint is a form of side channel for re-identification. As it is infeasible to account
for all unknown side channels, it is not feasible to establish a complete fingerprint
surface. Hence we follow a pragmatic approach to identifying the fingerprint surface
(much like the aforementioned studies). We use an existing fingerprint library and
extend4 it to account for the additional fingerprint-alike capabilities encountered in
the analysis of the commercial bot detector, listed below, as well as best practices
for bot detection encountered online. The fingerprint surface collected by the tool is
shown in Table 7.2. The updates added due to the reverse analysis are:

• All keys from the window and document objects.

• A list of all mimetypes supported by the browser.

• A list of all plugins supported by the browser.

• All keys and values of the navigator object.

In addition, there are several discussions on best practices for identifying web bots
available online. From this, we included the following extra elements to include in the
browser fingerprint:

• Lack of “bind” JavaScript engine feature [She15b]:
Certain older web bots make use of outdated JavaScript engines that do not
support this feature, which allows them to be distinguished from full JavaScript
engines.

• Stack trace [She15a]:
When throwing an error in PhantomJS, the resulting stack trace includes the
string ‘phantomjs’.

• Properties of missing images [Vas17]:
The width and height of a missing image is zero in headless Chrome, while being
non-zero in full Chrome.

• Sandboxed XMLHttpRequest [She15b]:
PhantomJS allows turning off “web-security”, which permits a website to exe-
cute a cross-domain XMLHttpRequest().

• Autoclosing dialog windows [She15b]:
PhantomJS auto-closes dialog windows.

The test site hosting this fingerprint script was then visited with each browser
and web bot with the same browser engine. Only properties that differed between
browsers and bots with the same browser engine constitute elements of those bots’

4https://github.com/bkrumnow/BrowserBasedBotFP/blob/master/public/js/fingerprint.js
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– Plugin Enumeration – CPU – DNT User Choice
– Font Detection – OpenDatabase – Flash Enabled
– User-Agent – Canvas fingerprint – colorDepthKey
– HTTP Header – Mime-type Enumeration – HTML body behaviour
– ActiveX + CLSIDs – IndexedDB – Physical px ratio to CSS px
– Device Memory (RAM) – WebGL Fingerprinting – Window object keys
– Screen resolution – AdBlock – Document object keys
– Available screen resolution – Language inconsistencies – Navigator properties
– Browser Language – OS inconsistencies – StackTrace
– DOM Storage – Browser inconsistencies – Missing image properties
– IP address – Resolution inconsistencies – Sandboxed XMLHttpRequest

– Navigator platform – Timezone – Autoclosing dialogs
– Touch support – Number of cores – Availability of bind engine

Table 7.2: Browser fingerprint gathered. Newly added properties are marked in bold.
Bold italic elements resulted from discussions on best practices.

fingerprint surfaces. The versions and setup that were used during our experiment
are listed in Table 7.3. Human-controlled browsers are marked as bold.

Remark that not all deviations in fingerprint lead to a fingerprintable surface.
For example, an automated browser may offer a different resolution from a regular
browser, which is nevertheless a standard resolution (e.g., 640x480). We thus manu-
ally evaluated the resulting deviations between the fingerprints of one browser family
and, for each web bot, determined its fingerprint surface accordingly.

OS browser version

Ubuntu 16.04

Chrome 64.0.3282.140
Chrome & Chromium + Selenium ChromeDriver Sel: 4.0.0; WD: 2.35
Chrome + Selenium IDE C: 62.0.3202.94; IDE: 3.0.1
NightmareJS 2.10
Chrome & Chromium Puppeteer 1.1.0

Firefox 54.0.1
Firefox + Selenium GeckoDriver Sel: 4.0.0; WD: 0.19.1
Firefox + Selenium IDE 2.9.1 & 3.0.1

Opera 53
Opera + Selenium OperaDriver Sel: 4.0.0; WD: 2.36

Windows 10

Microsoft Edge 41.16.299.15.0
Microsoft Edge + Selenium Edge Driver Sel: 4.0.1; WD: 10.0.16299.15

Internet Explorer 11.0.50
IE + Selenium InternetExplorerWebDriver Sel: 4.0.1; WD: 3.9.0

OS X 10.13.5

Safari 12.0
SafariDriver Sel: 3.6.0; WD: N/A
PhantomJS 2.1.0

Table 7.3: Configurations used to determine fingerprint surfaces.
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Figure 7.1: Browser-wise comparison of the number of deviations. Bars for headless
browsers are depicted in black

7.4.3 Resulting fingerprint surfaces

Several web bots support headless (HL) mode. This mode functions similarly to nor-
mal operation of the web bot, but does not output its results to a screen. In total, we
determined the fingerprint surfaces of 14 web bots (full fingerprint surfaces available
online5). Together with variants due to HL mode, this resulted in 19 fingerprint sur-
faces. We found both newly introduced properties and existing properties where the
bot-browser has distinctive values. Figure 7.1 depicts the number of deviations (i.e.,
the number of features in the identified fingerprint surface) of the tested web bots.
As can be seen, PhantomJS has many deviations. Another finding is that headless
mode leads to a greater number of deviations. This happens for all web bots except
for NighmareJS.

The results of our fingerprint gathering differed on several points from the results
of the reverse analysis. Specifically: for several of the tests used by Distil, we did not
encounter any related fingerprint. We investigated this discrepancy by conducting
source code reviews of web bot frameworks to trace such tests back to specific web bot
frameworks. We found several properties,6 that were no longer in the versions of the
frameworks we tested, but were present in other versions (older versions or derived
versions such as Selendroid). This underscores the incompleteness of the derived
fingerprint surface: updates to web bot frameworks will thus result in changes to the
fingerprint surface.

5https://bkrumnow.github.io/fpbotdetection/fingerprints.html
6webdriver evaluate webdriver-evaluate, fxdriver unwrapped, $wdc, domAutomation and domAu-

tomationController
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Table 7.4 shows an example of a set of deviations and the resulting fingerprint.
It lists deviations found by comparing Chrome with a headless Selenium-Webdriver-
driven Chrome browser. The deviations listed under the UserAgent string (equally to
request headers), window and document keys are unique properties and values, that
together build the fingerprint surface. Other properties, such as missing plugins or
screen resolutions, might be useful indicators for a detector, but are not unique for
web bots.

7.5 Looking for web bot detectors in the wild

In this section, we use the identified web bot fingerprint surfaces to develop a scan-
ner that can detect web bot detectors. Since the fingerprint surfaces are limited to
the web bots we tested, we extended our set of fingerprint surfaces with results from
the reverse analysis and other common best fingerprinting-alike practices to detect
web bots. The resulting fingerprint features were expressed as patterns, which were
loaded into the scanner. The scanner is built on top of the OpenWPM web mea-
surement framework [EN16]. OpenWPM facilitates the use of a full-fledged browser
controllable via Selenium. The scanner thus resembles a regular browser and can-
not be distinguished as a web bot easily without client-side detection. Moreover,
OpenWPM implements several means to provide stability and recovery routines for
large-scale web measurement studies.

We set up the scanning process as follows: first, the scanner connects to a website’s
main page and retrieves all scripts that are included by src attributes. Each script
that matches at least one pattern is stored in its original form, together with the
matched patterns and website metadata. Scripts that do not trigger a match are
discarded.

7.5.1 Design decisions

Some parts of the fingerprint surface concern not properties, but their values. For
example, in Table 7.4, the value of navigator.useragent contains ‘HeadlessChrome’
for a web bot, instead of ‘Chrome’ for the regular browser. To detect whether client-
side scripting checks for such values, we use static analysis. To perform static analysis,
the detection must account for different character encodings, source code obfuscation
and minified code. Therefore, the scanner transforms scripts to a supported encoding,
removes comments and de-obfuscate hexadecimals. The resulting source code can be
scanned for patterns pertaining to a specific web bot’s fingerprint surface.

Note that our approach has several limitations. In the current setup, the scanner
does not traverse websites. As such, data collection is limited to scripts included on
the first page. We caution here once again that browser fingerprinting is only one of
a handful of approaches to detecting bots. For example, this approach cannot detect
behavioural detection. Nevertheless, from the reverse analysis we learned that browser
fingerprinting by itself can be sufficient for a detector script to conclude that the
visitor is a web bot, irrespective of the outcome of other detection methods. Finally,
as a consequence of using static analysis, this approach will miss out on dynamically
included scripts [NIK+12]. Thus, our approach will provide a lower bound on the
prevalence of web bot detection in this respect.
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property Chrome Selenium WD. Chrome (HL)

userAgent Mozilla/5.0 (X11; Linux
x86 64) AppleWebKit/537.36
(KHTML, like Gecko)
Chrome/ 64.0.3282.140
Safari/537.36

Mozilla/5.0 (X11; Linux
x86 64) AppleWe-
bKit/537.36 (KHTML, like
Gecko) HeadlessChrome/
64.0.3282.140 Safari/537.36

resolution 1920x975 640x480

available Resolution 1855x951 640x480
language inconsistencies False True

canvas fp - Deviates

plugins Chrome PDF Plu-
gin::Portable Document
Format::application/x-google-
chrome-pdf pdf,. . .

None

MIME types {”0”:{},”1”:{},”2”:{},”3”:{},. . . } {}

request headers ”content-length”:”65515”,
”user-agent”:”Mozilla/5.0
(X11; Linux x86 64)
AppleWebKit/ 537.36
(KHTML, like Gecko)
Chrome/64.0.3282.140
Safari/537.36”, ”accept-
language”:”en-
US,en;q=0.9”

”content-length”:”64980”,
”user-agent”:”Mozilla/5.0
(X11; Linux x86 64) AppleWe-
bKit/ 537.36 (KHTML,
like Gecko) Headless-
Chrome/64.0.3282.140 Sa-
fari/537.36”

window keys - Missing: chrome, attr

document keys - Added:
$cdc asdjflasutopfhvcZLmcfl

document Elements - Additional nodes in document
tree:
#myId{visibility:visible}”,
”childNodes”:[]}]},{”nodeType”:3,
”nodeName”:”#text”,. . .

Table 7.4: Deviations between headless Selenium + ChromeDriver and Chrome. The
resulting fingerprint surface is marked in bold

111



7.5 – Looking for web bot detectors in the wild

7.5.2 Patterns to detect web bot detectors

To determine if a website is using web bot detection, we check whether it accesses the
fingerprint surface. We do this by checking whether the client-side JavaScript of the
website includes patterns that are unique to an individual bot’s fingerprint surface.
We derived these patterns as follows: firstly, from the the determined fingerprint
surfaces, secondly, from the reverse analysis. With these we executed preliminary runs
of the scanner, which resulted in more candidate scripts. The third source of patterns
stems from new scripts identified in this stage. Table 7.5 lists the used patterns.
Patterns derived from reverse analysis of the Distil bot detector are marked as ‘RA’,
while patterns that emerged from the gathered fingerprint surfaces are marked as
‘FP’. Finally, later identified web bot detector scripts are marked as ‘RA2’. For all
patterns where it is clear which web bot they detect, this is indicated in the table.
By construction, this is the case for all fingerprint surface-derived patterns. However,
not all patterns from the various reverse analysed scripts could as readily be related
to specific web bots. These are marked as ‘?’ in the column Detects in Table 7.5.

Figure 7.2: Fraction of web bot detectors within the Alexa Top 1M

Figure 7.3: Number of unique hits per website. Each pattern is counted once per site
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pattern source detects

”webdriver”,’webdriver’, FP IE + Sel. WD
\.webdriver(?![a-zA-z-])
webdriver script fn FP IE + Sel. WD
Selenium IDE Recorder FP FireFox Selenium IDE
PhantomJS(?![a-zA-z-]) FP PhantomJS
phantom(?![a-zA-z-]) FP PhantomJS
callPhantom FP PhantomJS
HeadlessChrome FP Chrome + Chromium
nightmare FP PhantomJS
IE DEVTOOLBAR CONSOLE FP InternetExplorer
EVAL ERROR
IE DEVTOOLBAR CONSOLE FP InternetExplorer
EVAL ERRORCODE

$cdc FP Chrome⋆ WebDriver
webdriver evaluate RA FX-Driver
fxdriver evaluate RA Selenium
domAutomation RA Headless Chrome
selenium RA ?
selenium evaluate RA ?
webdriver script func RA ?
selenium unwrapped RA ?
driver unwrapped RA ?
webdriver unwrapped RA ?
driver evaluate RA ?
fxdriver unwrapped RA ?
Sequentum RA ?
callSelenium RA ?
script function RA ?
$wdc RA2 Selendroid
webdriver-evaluate RA2 FX-Driver
domAutomationController RA2 Headless Chrome
phantomas(?![a-zA-z-]) RA2 PhantomJS

[’PhantomJS(?![a-zA-z-])’,’botPattern’] RA2 PhantomJS

Chrome⋆: Chrome and Chromium.
FP: From fingerprint surface.
RA: From reverse analysis of the Distil script.
RA2: From the reverse analysis of later identified scripts.

Table 7.5: Web bot detector patterns derived from our reverse analysis and fingerprint
surfaces
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patterns # sites
validation

sample size FP FP%

1 PhantomJS(?![a-zA-z-]) 115,940 383 4 1%
2 callPhantom 11,759 373 0 0%
3 phantom(?![a-zA-z-]) 11,747 372 15 4%
4 HeadlessChrome 10,279 371 0 0%
5 "webdriver", ’webdriver’, 8,512 368 2 1%

\.webdriver(?![a-zA-z-])
6 webdriver-evaluate 5,441 all scripts 0 0%
7 domAutomation 2,238 328 0 0%
8 phantomas(?![a-zA-z-]) 2,123 317 0 0%
9 domAutomationController 1,852 all scripts 0 0%

10 webdriver script fn 1,499 306 0 0%
11 Sequentum 1,479 all scripts 0 0%
12 $cdc 1,251 all scripts 19 2%
13 $[a-z]dc 1,240 all scripts 8 1%
14 selenium 636 240 86 36%
15 Selenium IDE Recorder 339 all scripts 0 0%
16 driver unwrapped 318 all scripts 0 0%
17 fxdriver unwrapped 318 all scripts 0 0%
18 driver evaluate 316 all scripts 0 0%
19 webdriver evaluate 315 all scripts 0 0%
20 selenium unwrapped 307 all scripts 0 0%
21 webdriver unwrapped 307 all scripts 0 0%
22 selenium evaluate 306 all scripts 0 0%
23 nightmare 296 all scripts 0 0%
24 callSelenium 296 all scripts 0 0%
25 webdriver script func 295 all scripts 0 0%
26 webdriver script function 293 all scripts 0 0%
27 fxdriver evaluate 267 all scripts 0 0%
28 $wdc 47 all scripts 20 43%
29 PhantomJS(?![a-zA-z-]) && botPattern 31 all scripts 0 0%

Table 7.6: Pattern matches within the Alexa Top 1M

7.5.3 Results of a 1-Million scan

We deployed our scanner on the Alexa Top 1M and found 127,799 sites with scripts
that match one or more of our patterns. Except for the Top 100K, these sites are
mostly equally distributed. In the Top 100K, the amount of web bot detection (15.7K
sites) is around a quarter higher than for the rest, which averages to 12.7K sites using
detection per 100K sites (see the distribution in Figure 7.2).

Many of these sites employ PhantomJS-detection. In Table 7.6, we see that out of
the 180,065 matches to the pattern list, the top three patterns were all PhantomJS-
related and together accounted for 139,446 hits. When all PhantomJS-related pat-
terns are grouped, we find that 93.76% of the scripts in which we found web bot
detection, contains one or more of these patterns.

While less prevalent, detection of other web bots does occur. The next most
popular patterns are related to WebDriver (1.31% of sites in Alexa Top 1M), Selenium
(1.34%), and Chrome in headless mode (0.99%). The other patterns were seldomly
encountered, none of them on more than 0.2% of sites.

We also investigated how many distinct patterns occurred in detector scripts (Fig-
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ure 7.3). Most sites only triggered one pattern, while 96% of these match the pattern
PhantomJS(?![a-zA-z-])”. This suggests that simple PhantomJS checks are rela-
tively common, while actual bot detection using client-side detection is rare. The
highest number of unique patterns found on a site was 23.

7.5.4 Validation

In order to validate the correctness of our results, we check if there are non-bot
detectors among our collection of bot detector scripts, so called false positives. To
confirm a script is a bot detector we perform code reviews. A script is marked as
confirmed if it accesses unique web bot properties or values via the DOM. Some
detectors separate their detection keywords in a different file, as we encountered that
during our reverse analysis in Section 7.2. Therefore, we also interpret these scripts
(listing multiple of our patterns) as detectors. Note, our validation is limited to false
positives. We do not investigate false negatives (scripts that do perform bot detection,
but were not detected): such scripts were not collected.

In a preliminary validation run, we observed that some patterns are more likely to
produce false positives than others. Therefore, we assessed false positive rates for the
patterns individually by building sets containing all scripts that triggered a specific
pattern.

Table 7.6 depicts the results of our validation by showing the set size of validated
scripts, number of false positives (FP) and the percentage of false positives per set.
For 20 out of 29 patterns, many sites used the exact same script. In these cases, we
validated the entire set by reviewing all unique scripts in the set. Any found false
positives were weighted accordingly.

For the remaining patterns, the sets of scripts was too diverse to allow full manual
validation. Instead, we used random sampling to validate these patterns. To deter-
mine the sample size that provides a confidence level of 95%, we used the calculation
provided by [Rao05] with a margin of error of 5% and maximum variability (50%).
In Table 7.6, we list these patterns together with the taken sample size.

Our validation shows that the patterns $wdc and selenium raise a non-negligible
number of false positives, though scripts matching these patterns only constitute a
tiny portion of our data set. The other patterns are good indicators of web bot
detection.

7.6 Cloaking: are some browsers more equal than
others?

Finally, we studied whether sites we identified as engaging in bot detection respond
differently to web bot visitors. That is: do these websites tailor their response to
specific web bots? Note that we manually examine the response to generic web bots,
which differs from previous work that investigated cloaking in the context of search
engine manipulation [ITK+16; WD05; WSV11].

We first assess the range of visible variations by visiting 20 sites that triggered a
high number of patterns. To do so, we visited websites and took screenshots with a
manual driven Chrome browser and an automated PhantomJS browser – the most
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Figure 7.4: Missing login fields on kiyu.tw

Figure 7.5: Missing video on hummingbirddrones.ca

detected and most detectable automation framework in our study. We repeated this
five times to exclude other causes, such as content updates. We found four types of de-
viating responses: captchas (3 sites), responses of being blocked (1 site), connection
cancellation or content not displayed (1 site) and different content (12 sites).

The differences in content concerned page layout (2 sites), videos that do not load
(3 sites), missing ads (9 sites) and missing elements (1 site). We found that these
deviations are highly likely to be caused by bot detection, e.g., one site in our set
does not display login elements to web bots (see Figure 7.4). In contrast, deviations
such as malformed page layouts may be a result of PhantomJS’ rendering engine.

We found that sites with missing videos use scripts to serve the videos by wis-
tia.com (cf., Figure 7.5). These scripts include code to detect PhantomJS. We there-
fore believe the lack of video to be due to web bot detection, though we cannot be
certain without reverse engineering these scripts fully.

Lastly, we explored how often deviations due to bot detection occur. In addition
to PhantomJS, we added a Selenium-driven Chrome browser. We randomly selected
108 sites out of our set of detectors. Each site was visited once manually and 5
times with each bot, using different machines and IPs. By comparing the resulting
screenshots we found deviations on 50 sites. From these deviations, we removed every
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observation (e.g., deformed layouts and inconsistent results over multiple visits) that
we could not clearly relate to web bot detection. This results in 29 websites where
we interpret deviations as a cause of web bot detection.

We found 10 websites that do not display the main page or show error messages to
web bots. captchas were shown on 2 sites (see Figure 7.7). We further encountered
missing elements on 2 sites and videos failed to load on 4 sites. Lastly, 15 sites served
less ads (see Figure 7.6). Overall, deviations appeared more often in PhantomJS (24)
than in Selenium-driven Chrome browsers (14).

Figure 7.6: Missing ads on cordcuttersnews.com

Figure 7.7: Blockage and loading of a CAPTCHA on frankmotorsinc.com

7.7 Conclusions

The detection of web bots is crucial to protect websites against malicious bots. At the
same time, it affects automated measurements of the web. This raises the question
of how reliable such measurements are. Determining how many websites use web bot
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detection puts an upper bound on how many websites may respond differently to web
bots than to regular browsers.

This study explored how prevalent client-side web bot detection is. We reverse en-
gineered a commercial client-side web bot detection script, and found that it partially
relied on browser fingerprinting. Leveraging this finding, we set out to determine the
unique parts of the browser fingerprint of various web bots: their fingerprint surface.
To this end, we grouped browsers into families as determined by their layout and
rendering engines. Differences between members of the same family then constituted
the fingerprint surface. We determined the fingerprint surface of 14 web bots. We
found PhantomJS in particular to stand out: it has many features by which it can be
detected.

We translated the fingerprint surfaces into patterns to look for in JavaScript source
code, and added additional patterns from the reverse analysis and common best prac-
tices. We then developed a scanner built upon OpenWPM to scan the JavaScript
source of the main page of all websites in the Alexa Top 1M. We found that over
12% of websites detect PhantomJS. Other web bots are detected less frequently, but
browser automation frameworks Selenium, WebDriver and Chrome Headless are each
detected on about 1% of the sites.

Lastly, we performed a qualitative investigation whether web bot detection leads to
a different web page. We found that indeed, some browsers are more equal than others:
captchas, blocked responses, and different content occur. In a further experiment,
we attribute at least 29 out of 108 encountered differences.
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Generic Detection of Web Bots

Web bot defences can improve coverage by combining multiple methods.
So far, three methods have been used: browser fingerprinting, order of
site traversal, and aspects of page interaction. While site traversal de-
pends on the study being executed, the other two aspects can be controlled
in a generic fashion. However, browser fingerprinting necessitates prior
knowledge of the used technology in the visiting bot. Contrasting page in-
teractions are free of this limitation and have the potential to detect any
bot that interacts on a page. To date, little is known to what extent au-
tomation frameworks are prone to detection via this method.

In this chapter, we provide an initial investigation of an interaction API
of the web automation framework Selenium to explore how it differs from
human interaction. We incorporate the latter results into HLISA, an API
that simulates human interaction. Finally, we discuss the conceptual arms
race between simulators and detectors and find that conceptually, detecting
HLISA requires modelling human interaction.

This chapter is based on the following publication:

HLISA: towards a more reliable measurement tool. Goßen, Daniel and
Jonker, Hugo and Karsch, Stefan and Krumnow, Benjamin and Roefs,
David. In Proc. 21st ACM Internet Measurement Conference (IMC’21),
DOI: 10.1145/3487552.3487843, 2021, [IMC21].
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8.1 Introduction

Web measurements that account for certain website functionality (cf., [MADWeb20;
DIP20; MADWeb23]) or aim to simulate human users typically interact with web-
sites [CHP+19; UDH+20; SAH+22]. This interaction includes opening subpages,
moving the cursor to trigger hover events, clicking page elements to activate them,
and typing to fill out forms. However, page interaction is a possible data source to
distinguish bots from web users [CGK+13]. Bot detection can undermine the funda-
mental assumption of web studies: that the measuring tool used encounters the same
Web as regular browsers would.

Serving different content hinges on recognising web bots as such. Three av-
enues for web bot detection have been identified: browser fingerprinting [ESORICS19;
VRR+20]), site traversal (cf., [TK02]), and interaction characteristics (cf., [CGK+13]).
Web studies that want to minimise errors due to web bot detection should account
for all three aspects. Crucially, mitigating site traversal – the path an automated
browser takes over a website – cannot be solved generically, as such paths depend
on the study being executed. However, neither browser fingerprint nor interaction
characteristics are (typically) study-dependent. Both aspects can thus be generically
addressed.

In this chapter, we investigate these two aspects. More particularly, previous
studies have found what properties to change about the browser fingerprint: elimi-
nating the webdriver property suffices for most contemporary detection approaches,
while methods to determine the full fingerprint needed are available [ESORICS19;
SLG19]. However, how to alter the browser fingerprint has not been as comprehen-
sibly studied. We investigate various ways to spoof aspects of a browser fingerprint
using JavaScript and elucidate the side effects inherent in each approach. Secondly,
previous studies and online advice usually focused on changing one specific form of
interaction to reduce the distinctiveness of its automation. In contrast, we offer a
comprehensive study on identifying and reducing distinctiveness for all types of user
interaction observable via JavaScript.

Contributions. The contributions of this work are:

• We compare known means to spoof identifiable properties in web bot frame-
works. We are the first to investigate side effects that allow the detection of a
spoofing attempt. Moreover, we test the effectiveness of the best method in the
wild.

• We experimentally establish the recognisability of the Selenium interaction API
and provide a proof-of-concept interaction library, HLISA, to address the iden-
tified shortcomings.

• We model the action-reaction cycle between detectors and simulators as an
arms race. Our model clarifies a detector’s and simulator’s limitations and how
to escalate their respective capabilities. Moreover, the model enables a legal
analysis of detection approaches vs privacy regulations.
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Ethical considerations. For the design and execution of our experiments as well
as the development of HLISA, we considered multiple ethical issues and integrated
mitigations when necessary.

Involvement of human participants. The experiments in this work involving human
subjects were extremely limited in scope. These experiments aimed not to establish
an average of generic human behaviour but to contrast Selenium’s interaction with
that of an individual human. As such, we limited the involved human participants
to ourselves. We asked the ethical advisory board for advice on whether approval by
the IRB was necessary. The advisory board agreed that in this case, for the specific,
limited amount of data gathered from the authors themselves, a full, formal ethical
review process was not needed.

Unintended negative secondary effects (dual use). Though our work aims to im-
prove the accuracy of tooling used in scientific web studies, our work may have sec-
ondary effects. As our work helps to make web bots less distinguishable from regular
visitors, it may be leveraged by nefarious bots and benign bots. In fact, malicious
web bot campaigns already incorporate simulated human interaction that circumvents
fraud detection (e.g., Methbot [Whi16]). Methbot’s interaction capabilities seem to
be at least as good as those of HLISA, so HLISA is not extending the capabilities of
criminals. This leaves benign uses of HLISA: for researchers to augment their scraping
bots; and for websites to augment their bot defences (by incorporating behavioural
bot detection trained against HLISA).

With these effects in mind, we believe the beneficial effects to outweigh the po-
tential negative consequences of our research.

Limited applicability of the model. HLISA’s interaction model relies on the data
collected from white, male, Western-European, highly educated subjects studying
computer science. Obviously, these subjects are not representative of the world’s
population. As such, we caution against using HLISA as-is for other purposes (e.g.,
usability testing).

Outline. The structure of this chapter is as follow: we contrast multiple approaches
in JavaScript to hide a web bots’ identifiable properties (Section 8.2). Then, we inves-
tigate produced interactions by Selenium and OpenWPM for recognisable patterns
(Section 8.3). Following this, we present our library HLISA (Section 8.4). In the final
part, we provide a theoretical model of the simulator-detector arms race (Section 8.5)
and present our final remarks (Section 8.6).

8.2 Evading fingerprint-based detection

Browser fingerprinting allows websites to detect bots without any interaction on a
page. Hence, to prevent bot detection, the first defence is to hide a web bot’s identi-
fiable properties.

There are two approaches to changing browser properties: modifying the browser’s
source code and overriding properties at run time (e.g., via JavaScript). Both have
their merits and disadvantages. Overriding based on the built-in functionality of the
JavaScript API can be applied dynamically, even for properties created at run time.
Furthermore, it is easy to deploy, as JavaScript code is directly injected into a web
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Table 8.1: Detectable side effects by spoofing methods

side effect
spoofing method
1 2 3 4

incorrect order of navigator properties × ×
modified navigator. length × ×
new Object.keys(navigator) × ×
defined navigator. proto .webdriver ×
unnamed window.navigator functions ×

page and is cross-platform compatible. One downside is that side effects may occur
due to JavaScript quirks. Moreover, such modifications can break websites, as already
found for some privacy extensions [Cro18].

In contrast, browser-level patches of properties avoid the introduction of such
side effects. However, adjusting the browser’s source code adds considerable over-
head. First, adjustments must be maintained for newly appearing browser versions.
Second, the browser build process may be a challenge for some users. Lastly, a
browser-level implementation binds a solution to a single platform. However, it needs
to be determined if JavaScript-level patching can be made without thwarting web
measurements.

In the remainder of this section, we explore approaches in JavaScript for property
spoofing. We use our insights to build an extension that can hide detectable properties
for OpenWPM, a popular framework to measure web privacy and security aspects (see
Section 9.2). Finally, we test our implementation on 1,000 websites.

8.2.1 JavaScript-based spoofing methods

To select spoofing methods suitable for our evaluation, we consider approaches used
earlier in the literature and approaches adopted by popular browser extensions. In
more detail, we conducted source code reviews of spoofing extensions available for
Firefox [Lin20; Ray20; Sch20; ser20; ner20], academic work to fight browser finger-
printing [FZW15; TJM15; CY19; NJL15] and research to block ads [SRM+17]. This
led us to the following methods:

1. defineProperty is a built-in function of JavaScript objects to set or alter an
object’s property directly.

2. defineGetter overrides a getter-function allowing us to return a specific
value without changing it. Note that Mozilla deprecated this function.

3. setPrototypeOf sets a new prototype for an object which provides control
over the object’s properties.

4. Proxy objects allow to re-define the behaviour of an object by wrapping it
with a proxy object.

We tested each method to spoof navigator.webdriver property1 to return false
within Firefox. Note that this is an easy-to-use property available by convention and

1https://www.w3.org/TR/webdriver/
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plays a crucial role in identifying WebDriver-controlled user agents. [VRR+20]. To
check for the occurrence of side effects of each method, we use JavaScript template at-
tacks by Schwarz et al. [SLG19] and the modified fingerprint library that we developed
in Section 7.4.

Table 8.1 lists the four evaluated methods along with their side effects. Interest-
ingly, none of the previously applied methods was side-effect free in our measurement.
For methods 1 and 2, we observe that each attempt to spoof a property increments
the navigator.length property. Spoofing the length property in this manner is
insufficient, as its original value remains in the prototype chain. In addition, we
find a change in the order of items when iterating through the navigator’s proper-
ties. This reveals which property has been overwritten. In a regular Firefox browser,
the webdriver property is enumerable but disappears from the listing when calling
Object.keys(navigator) in our overwritten version. However, it is possible to rem-
edy this by setting the enumerable property to true. The third method does not
include the previous method’s side effects but is inherently detectable. In regular
Firefox, the chain proto is not defined for the webdriver property but needs to
be set in order to execute this method. We find that wrapping the navigator object
is detectable by calling the toString function for the last approach. As shown in
Listing 8.1, the result of this overriding leads to missing function names.

1 //Call of a toString function of a built -in method
2 window.navigator.toString.toString ();
3
4 // Output in a regular Firefox browser
5 "function toString () {
6 [native code]
7 }"
8
9 // Output after shadowing methods via proxy objects

10 "function () {
11 [native code]
12 }"

Listing 8.1: Detectability of JavaScript spoofing based on proxy objects.

We conclude that JavaScript proxy objects appear to be most suitable for spoof-
ing. While an adversarial website could spot a wrapped navigator object, it does not
know what property was changed when applying this approach to multiple proper-
ties. Further, benign web users may apply the same techniques through extensions,
e.g., userAgent spoofers, privacy extensions, and such. Still, the effectiveness of this
approach must be evaluated on real-world websites.

8.2.2 Evaluation

We developed a browser extension to spoof the webdriver property in OpenWPM
clients based on our selected method. To evaluate our extension in the field, we run
OpenWPM with and without our extension on two different machines. We use a
consistent setup with OpenWPM v.0.13.0 and run the Firefox browsers in headful
mode. We then let both machines visit the same set of websites simultaneously. Our
website set consists of a random selection of 1,000 sites taken from the Top 10K
websites of the Tranco list [LVT+19]. As our experiment could be influenced by
web dynamics (bidding processes, content updates, etc.) as well as blocking through
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suspicious IP ranges (e.g., university or cloud-based IP addresses [ITK+16; ZBO+20]),
we take precautions. First, we use different residential IP addresses, and second, we
run eight browser instances simultaneously per machine. This also helps us to improve
robustness, as we can check the consistency of effects over multiple bots.

Incidence of blocking. We check if our extension mitigates bot detection while
not breaking websites. To measure incidences of detection, we review screenshots and
count the occurrence of blocking pages, captchas, visible error messages and HTTP
response status codes that occur only for one machine. In addition, we evaluate if
there is missing content (such as ads). We choose to use visual responses as these
allow definitive attribution to bot detection, while other measurable aspects (e.g.,
cookies or HTTP traffic) do not. Not all websites with bot detectors react visually
to automated visitors [JSS+21]. As such, this check is only an approximation to
determine the effect of using the spoofing implementation.

Table 8.2 breaks down our results of screenshot evaluation separated into reached
sites and successful visits. We see a low number of sites with visible signs of bot
detection. All observed differences combined occur on only 16 (1.7%) sites for the
vanilla OpenWPM client. We find that spoofing reduces this effect significantly. In
fact, we see only one site that deploys blocking against our extended OpenWPM
version for a smaller subset of visits.

To identify blocking at HTTP level, we look at status codes in HTTP responses.
We separated these by first and third-party responses. We further use Wilcoxon
Matched-Pairs signed-Rank Test with a confidence interval of 95% to test for sig-
nificance. Our results show only a notable difference in first-party errors, with a
significant decrease (p-value = 0.004) when using our extension. Figure 8.1 depicts
the occurrence of error-related HTTP responses, which shows that this decrease is
mainly due to responses with 403 (forbidden) and 503 (service unavailable). Both
status codes can be related to the effect of bot detection.

Incidence of website breakage. Lastly, we look for deformed layouts, frozen el-
ements, missing content and HTTP errors to spot if any website breakage occurred.
Interestingly, we identified one site with a deformed layout and one site with an
ever-loading video element, which hints at compatibility issues on these sites. Unfor-
tunately, while the effect persisted when running the experiment on another machine,
we failed to identify the root cause for these breaks.

Table 8.2: Results from the screenshot evaluation

response
sites visits

(1) (2) (1) (2)

total 921 921 7,230 7,221
missing ads 7 3 56 10
– no ads 5 1 40 4
– less ads 2 2 16 6

blocking/captchas 8 1 49 3
frozen video element(s) 1 0 8 0

Results for crawler OpenWPM (1) and OpenWPM+extension (2).
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Figure 8.1: HTTP errors with more than 100 occurrences grouped by status code

8.3 Recognising generated interaction

Our goal is to identify how page interaction generated by an automation framework
differs from non-automated clients. A web page can monitor a web client’s inter-
actions through JavaScript events. We take the website perspective by setting up
an experiment where we measure JavaScript interaction events of web automation
frameworks and humans.

Again, we start with OpenWPM. Nevertheless, OpenWPM simply exposes the
Selenium interaction API, wherefore measurements with either of these tools lead to
the same outcome. The only difference to Selenium is an opt-in bot detection mitiga-
tion feature offered in OpenWPM. According to the developers, the feature does not
provide a thorough simulation of human behaviour [BC21]. Still, a study by Ahmed
et al. [ADZ+20] reports a lower occurrence of captchas due to the mitigation feature
turned on. We investigate the strength of this protection and if specific characteristics
make OpenWPM’s bot detection mitigation detectable.

8.3.1 Measuring interaction

We performed several experiments to compare the interaction of Selenium with that of
a regular human (ourselves). For that, we distinguish between fine-grained and course-
grained actions. A fine-grained action is a single operation, such as a mouse button
press. In contrast, a coarse-grained action consists of a chain of fine-grained actions.
For example, clicking an element on a page could consist of three steps: moving the
cursor, pressing the mouse button, and releasing it. We based our investigation on
coarse-grained actions that are essential for typical web browsing activities (typing,
clicking, mouse movement and scrolling).

Human interaction. We built a website that uses JavaScript to record events. For
each interaction type, our site asks the user to perform simple tasks.

We took measurements on typing by letting the user type a given text of 100
characters. Our page recorded vital press and key release events, including the times-
tamp. From this, we derived dwell and flight times for a user’s keystrokes (dwell time
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denotes the time between a key press and a key release; flight time is the time between
a key release and a key press).

For mouse movement, we record the cursor coordinates and timestamps for each
onmousemove event. We use this data to monitor the cursor’s distance, slope and
speed. In addition, we create a visual representation of the path taken. The site
instructed the participant to click two distant elements in a specific order so that the
interaction starts and ends at similar positions.

We created a moving element for mouse clicks to collect data from various angles.
The element relocates every time it is clicked. Our human participant repeated this
task 100 times, where we recorded the dwell time and the position of each click.

Last, we created a sufficient long page (height 30K pixels) to record scrolling
events. The task was to scroll via the mouse wheel from top to bottom at a comfortable
pace. This provides realistic data on one scrolling method; other methods are not
considered.

Selenium’s interaction. To analyse the behaviour exhibited by Selenium’s inter-
action API, we first determined how to measure any interaction. OpenWPM uses the
Firefox browser, which offers 57 events (see Appendix B.1) related to or triggered by
interaction. Many of these provide overlapping information. The following set of 10
events together cover all interaction information available to a web page:

• Mouse movements:
– mousemove

• Mouse clicking:
– dblclick

– mousedown

– mouseup

• Scrolling:
– scroll

– wheel

• Typing:
– keydown

– keyup

• Touch:
– touchstart

– touchend

• Losing/gaining focus:
– visibilitychange

– blur

– focus

Interestingly, the granularity of events varies. In particular, the granularity of
mouse movement events can vary. Moreover, we did not find a correlation between
the number of events fired per second and mouse movement speed. All in all, we found
Firefox’s event API too coarse to register every detail of normal mouse movement.
In contrast, events for all other categories provide a more comprehensive view. For
example, the granularity for typing events is 1 ms. Interestingly, formouse clicking,
Firefox asks its environment what the maximum interval is to consider two consecutive
clicks a double click. For Windows, this defaults to 500 ms; in testing Selenium, we
found a maximum interval of 600 ms.

Scroll-related events can be triggered in many ways, including: mouse wheel,
trackpad scrolling, scroll bar, arrow keys, using find, URL anchors, and auto-scrolling.
This wide array of origins, each causing a different amount of scrolling, significantly
restricts the effectiveness of using this type of interaction to distinguish bots from
human visitors. Thus, even though the amount scrolled by a scroll-wheel ‘click’ is
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fixed (57 pixels in our setup), different scrolling amounts can and will occur in normal
use. The absence of a wheel event or a different amount of scroll distance thus does
not suffice to distinguish a web bot from humans. Touch movement can also indicate
a touchpad, and, as such, is included in mousemove. Finally, focus events can be
triggered by Selenium also after minimising a headful browser. Minimising causes
a visibilitychange event, after which no further interaction should occur. This
should be addressed in the experiment design.

8.3.2 Recognising Selenium’s interaction

To determine in what respect the behaviour of Selenium is distinctive, we challenged
visitors to perform specific tasks on a test site and measure aspects of the resulting
behaviour. Our experiment shows that Selenium’s speed and precision far outstrip
human capabilities. We tested four aspects of Selenium’s behaviour via simple web
pages: typing, mouse movement, scrolling via touchpad/mouse wheel, and clicking.
We visited each of these pages with Selenium and manually by ourselves. While the
latter does not constitute a thorough measurement of human behaviour, this was
sufficient to identify surprisingly large differences.

• Typing. For typing, we measured dwell and flight time; see Table 8.3. Selenium
types much faster than our human test subject.

• Scrolling. With respect to scrolling, we noted that human scrolling (irrespec-
tive of the input device used) generates many events, each of which with a
limited number of pixels to scroll (95% within [1, 50]). A bot-invoked scroll
generates one event with the number of pixels requested – which can easily be
beyond the expected human range.

• Clicking. Wemeasured clicks on elements based on the location and dwell time.
Table 8.4) lists exemplarily three clicks on a non-moving target by Selenium
and a human user. We observe that Selenium clicks precisely in the centre of an
element every single time. In contrast, human clicking is typically off-centre by
at least a few pixels in both x- and y-directions. Moreover, the average human
dwell time is significantly longer (100–160 ms) compared to Selenium (0.15–0.3
ms). This remains true even for the fastest human dwell times we recorded (7
ms on a touchpad). Finally, humans typically move the mouse while clicking
(e.g., when double clicking); Selenium does not when using the click function.

• Mouse movement. Selenium starts moving at the top left corner (0, 0). This
happens each time the browser is freshly started. Moreover, the movement is
always in a straight line. In contrast, all human mouse movements we recorded
were more curved and sometimes contained errors (e.g., overshooting the target,
clicking next to an element, and such).

OpenWPM’s bot detection mitigation. OpenWPM’s feature produces random
interaction on a page, after loading it. It encompasses three steps which always occur
in the very same order: random mouse movement, scrolling down the page within a
random distance, add a random timeout. While the latter does not lead to measurable
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Table 8.3: Bot vs. human typing characteristics. Dwell and flight time in ms.

Bot Human
dwell flight time dwell flight time

avg 0.76 0.41 90.73 86.77
max 2.58 0.80 121.60 395.76
min 0.34 0.16 11.52 10.18
std 0.48 0.17 32.52 37.12

Table 8.4: Bot vs. human click characteristics

Bot Human, mouse Human, touchpad
x y dwell x y dwell x y dwell

45 230 0.22 57 226 135.18 54 232 6.84
45 230 0.18 39 228 110.46 30 233 7.16
45 230 0.22 54 226 103.76 66 231 6.30

Dwell given in milliseconds.
x and y give pixel values on the screen.

events, we focus on scrolling and mouse movement. To that end, we reviewed the
source code and set up a page to measure the resulting interaction.

We found that OpenWPM produces many events that move more than 50 pixels
when scrolling. In contrast, human user scrolling typically contains very few large
distances (beyond 50 pixels) but many small events that move only a few pixels. For
mouse movement, OpenWPM uses a handful of random points on the screen. Each
intermediate step is once again a straight line, as shown in Figure 8.2. Due to the
usage of bot mitigation before any other interaction, the movement starts in the top
left corner of the screen. Each move is carried out without timeouts in between or the
consideration of speed. All these features will make it detectable when monitoring
the slope or acceleration of the movement.

8.4 Improving Selenium’s interaction API

We designed and implemented the Human-Like Interaction Selenium API (HLISA)
to reduce the detectability of any web bot using the Selenium framework (such as
OpenWPM). To simulate more human-like interactions, we use the data collected in
our experiment (see Section 8.3.1). Our API advances mouse movement, scrolling,
clicking and typing. Finally, we collect interaction data on naive approaches to im-
prove Selenium’s shortcomings and contrast them with our solution.

Mouse movement. Mouse movement of a human has an initial acceleration, a
deceleration near the end of the trajectory, and moves in a jitterish curved trajectory.
Selenium’s interaction API, in contrast, moves at a uniform speed over a straight line.
A naive solution would be to use a straightforward Bézier curve, but as is apparent
from Figure 8.3, this is still very artificial. In contrast, HLISA modifies a Bézier
curve by starting with acceleration and ending with deceleration over a jittery curve.
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Figure 8.2: OpenWPM’s anti-bot detection mouse movement

We use the speed, acceleration and jitter of the mouse movement observed in our
experiment (see Section 8.3.1) as a baseline.

Figure 8.3: Cursor trajectories for: (A) Selenium, (B) human, (C) naive solution, (D)
HLISA

Mouse clicks (Figure 8.4). Selenium clicks perfectly in the centre of the HTML
element. In contrast, clicks by humans are much more distributed but hardly ever
in the centre. A naive approach would be to randomise the click location, e.g., us-
ing a uniform distribution (bottom left in Figure 8.4). While this does improve over
Selenium’s default behaviour, it generates clicks in places humans never reach. In
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contrast, HLISA uses a normal distribution with parameters drawn from our experi-
ment.

Figure 8.4: Experiment: distribution of mouse clicks of (top left) Selenium, (top right)
humans, (bottom left) naive solution, (bottom right) HLISA.

Scrolling. Selenium does not offer an API for scrolling; its default method lacks
mouse wheel events and can scroll arbitrary long distances in one scroll event in
contrast to human scrolling via the mouse wheel. However, there is a plethora of other
human interactions that trigger scrolling, including scroll bar, anchor links, arrow
keys, space bar, search functionality, and Firefox’s auto-scroll. As such, detecting
bots based on scrolling is challenging, and no obvious, naive solution that addresses
Selenium’s shortcomings. Nevertheless, HLISA extends the Selenium API with a
function to simulate scrolling: it uses the default scroll distance (57 pixels for a
mouse wheel), a normal distribution to incorporate short breaks, and it incorporates
a slightly longer break to account for moving one’s finger to continue scrolling the
mouse wheel.

Key presses. Key presses of Selenium have a negligible dwell time. Moreover,
overall typing speed is inhumanly fast (13,333 characters per minute) and flawless.
In our experiments, we observed that fast typing with ten fingers (600 characters per
minute) can cause interleaving key presses, i.e., sometimes a key is only released when
a different key has already been pressed.

Moreover, while humans need to press modifier keys to press characters like capi-
tal letters, Selenium can input any character that exists without pressing additional
modifier keys. By monitoring the usage of modifier keys, detectors can infer the
keyboard layout, which can be used for static fingerprinting purposes. In contrast,
HLISA ensures dwell time is random, drawn from a normal distribution parametrised
with values found in our experiment. In addition, HLISA simulates a key press for
the Shift key when needed. Finally, HLISA incorporates the timing of various pauses
from the work of Alves et al. [ACdS+07]. Hence, HLISA takes into account a variety
of timings of events, such as pauses after opening or closing a sentence, writing a new
word, using commas, and many more.

Implementation and deployment. HLISA triggers events by calling fine-grained
interaction functions (e.g., move to offset(x,y), key down(), and key up()) of the

130



Chapter 8 – Generic Detection of Web Bots

1 # Importing the HLISA library
2 from HLISA.hlisa action chains import HLISA ActionChains
3
4 # Creating an ActionChain with HLISA
5 ac = HLISA ActionChains(webdriver)
6
7 # Selecting an element
8 element = driver.find_element_by_id('text_area ')
9

10 # Adding mouse movement and typing with HLISA
11 ac.move_to_element(element)
12 ac.send_keys_to_element(element , "Text..")
13
14 # Executing a chain
15 ac.perform ()

Listing 8.2: Code example for clicking and sending keys to an element with HLISA.

original Selenium API. This makes HLISA resistant to changes in the Selenium source
code that do not affect the Selenium API. The default Selenium API enforces a
lower bound on the duration of mouse movements that is too high for simulating
human interaction. For Selenium versions <4, we change this duration to 50 msec by
overriding the internal Selenium function create pointer move(). This allows us to
express human-like mouse movements.

HLISA’s API provides the same calls and signatures as in the original Selenium
API (as shown in Table B.1 in the Appendix); except for a few additions. This
allows developers to integrate HLISA by modifying two lines of code (see red code
in Listing 8.2). Hence, HLISA is compatible with all Python projects already using
Selenium.

8.4.1 Current limitations of HLISA

HLISA’s current implementation is limited in its capability to impersonate human
interaction in two general ways. First, some critical aspects of human behaviour
transcend individual interaction with a page but concern more generic behavioural
aspects that require separate modelling. Whether and to what extent such behaviour
should be simulated depends on the specific experiment being conducted and thus
should not be integrated into HLISA. For example, human visitors may exhibit non-
functional interaction with webpages, such as selecting and deselecting parts of a
page without purpose. Such idiosyncrasies of human behaviour cannot be executed
independently by an interaction API, as it may interfere with an experiment’s purpose.
In a similar vein, other aspects of interaction increase distinctiveness, which operators
should handle on the level of an experiment outside of any specific interaction API.
These include:

• Mouse movement starting at (0,0), which can be solved by moving the mouse
prior to loading a page

• Adding random/spontaneous mouse movements

• Misclicking
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• Introducing typing errors and more complex typing behaviour such as reformu-
lating sentences, pausing in longer texts and erasing and cancelling input.

While such aspects cannot be delegated to an interaction API, we see ways to
improve HLISA’s approximation of human interaction. A general caveat is that
HLISA currently uses a normal distribution (parameters following from our exper-
iments) to introduce noise in behaviour, while human behaviour is not normally
distributed [CGK+13]. Similarly, HLISA is a proof-of-concept interaction API. It
accounts for basic measurements of interaction, such as dwell and flight times of
clicks and key presses. Advanced measures of interaction (such as adapting mouse
movement to target size and shape) go beyond its proof-of-concept nature. For the
same reason, HLISA does not account for touch actions.

Table 8.5: Comparison of libraries or code samples to simulate human like behaviour.
A ‘✓’ indicates the functionality is present in the library or code sample

functionality package

1 2 3 4 5 6 7 HLISA
mouse movement functionality ✓ ✓ ✓ ✓ ✓ ✓ ✓
realistic mouse movement speed ✓ ✓ ✓ ✓ ✓
movement accelerates/decellerates ✓ ✓ ✓ ✓
movement shivering ✓ ?a ✓
curve in movementb,c ✓ ✓ ✓ ?a ✓ ✓
moves to random location in elementb ✓

click functionality ✓ ✓ ✓ ✓ ✓ ✓
realistic dwell timeb ?a ✓ ✓
simulates accidental right click ✓
simulates accidental double click ✓
simulates accidental no click ✓

scrolling functionality ✓ ✓
pause between scroll ticks ✓ ✓
pause for finger replacement ✓ ✓
realistic scroll distance in tick ✓ ✓

keyboard functionality ✓ ✓
flight timeb ✓ ✓
dwell timeb ✓
timings based on data ✓ ✓

other features
Selenium ready ✓ ✓ ✓

1. A: “Human-like mouse movement”: answer using B-spline curves to question on StackOverflow
https://stackoverflow.com/a/48690652

2. Pyclick: Python library for mouse movement using Bézier curves https://github.com/patrikoss/pyclick

3. BezMouse: Python tool for mouse movement using Bézier curves, to avoid bot detection in games
https://github.com/vincentbavitz/bezmouse

4. Python Human Movements: Python package to simulate human movement https://pypi.org/project/pyHM/

5. Scroller: tool to simulate human scrolling in Selenium https://github.com/hayj/Scroller

6. ClickBot: Java tool to simulate mouse movement and clicks https://github.com/amSangi/ClickBot/

7. Bachelor thesis [Noo19]: incorporates typing rhythm from HCI literature in Java framework

a. The project links to source code that is incomplete

b. Absence of this feature makes interaction obviously artificial

c. Previously required to bypass Google reCaptcha https://stackoverflow.com/a/37220168
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8.4.2 HLISA in comparison to other tools

In Table 8.5, we compare HLISA’s features with other tools that simulate parts of
human interaction. These come from various sources, ranging from tools focusing
on browser interaction (e.g., Scroller) to tools focusing on scripting games (e.g., Bez-
Mouse). To the best of our knowledge, HLISA is the only tool that can be used ad-hoc
with Selenium while delivering comprehensive coverage of the Selenium API.

8.5 An arms race model of interaction

Conceptually, websites (as detectors) and web bots (as simulators) are engaged in
an arms race. Analogous to the ad-blocking arms race as modelled by Storey et
al. [SRM+17], detectors and simulators can refine their current techniques and escalate
the war by introducing more vigorous techniques.

In Figure 8.5, we depict a conceptual model of this arms race. Note that other
detection mechanisms (e.g., fingerprinting) will give rise to a similar arms race. Simu-
lators begin by exhibiting unlimited behaviour: unhumanly fast, unhumanly perfect,
and able to interact with all elements irrespective of visibility. Detectors can identify
bots by detecting these aspects. This can cause simulators to limit their interaction
to that which is humanly possible: within human speeds, including noise instead of
perfect replayability and accounting for visibility. Either side can refine their tech-
niques further, succeeding in detecting (e.g., detecting artificialness of noise, adding
honey elements) or evading detection. In addition, detectors can escalate, by mov-
ing from detecting specific aspects of how simulators interact, to detecting deviations
from an expected baseline (human interaction). This forces the simulators to move to
simulating human interaction. Once again, either side can refine their techniques – in
this case, the models on which detection and simulation is based. The next escalation
is to recognise that certain interactions are correlated. For example, faster mouse
movement may be correlated with higher (or lower) accuracy clicks. Detectors that
move to this level will detect simulators that lack such internal consistency in their
interactions. Simulators can, of course, adopt such consistency, which will ultimately
defeat detection based exclusively on interaction. The detectors can only escalate
further by incorporating information beyond page interaction (marked with dotted
lines in Figure 8.5), such as browser fingerprints or individual interaction profiles for
specific users (e.g., social media sites have sufficient data for this). This requires an
enrolment period during which the detector learns the specific individual’s interaction
patterns. The only way to defeat such detection mechanisms is to move from simu-
lating interaction that is plausibly human; it simulates the specific interaction profile
of a specific individual.

Finally, note that privacy regulations such as the EU’s GDPR can set a legal limit
to how far detectors can evolve. For example, any detection technique that could be
used to identify and track a person would likely fall under the GDPR’s purview. The
top two detection levels focus detection to such an extent, that individual users could
be distinguished. That may run afoul of privacy regulations, though a detailed legal
analysis is needed to determine the exact legal limits.

In conclusion, we find that the simulators can always beat the detectors by making
use of the same models. This works well for the first few detection strategies, as these
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are based on generic findings. However, higher up, this becomes more complex: the
exact model of consistency needed to satisfy a detector may not be public knowledge.
While this complicates matters for the simulators, they have the advantage that
detectors must not be too strict or risk barring human visitors entry. Finally, HLISA
offers a simulation of human interaction. As such, it is situated at the third level
in the hierarchy of Figure 8.5. Thus, consistently defeating HLISA requires tracking
consistency of behaviour. We caution that HLISA is not the endgame of this level;
several refinements are possible to approach human interaction more closely.

No limits on behaviour

Detect artificial behaviour

Limit behaviour to humanly
possible

Detect deviations from human
behaviour

Use distribution of human
behaviour

Tracking consistency of
behaviour

Use consistent behaviour

Recognise specific user profile

Use specific user profile

Web bot Website

Figure 8.5: A model of the arms race for page interaction

8.6 Conclusions

In this chapter, we (1) investigated the side effects of various methods to alter the
browser fingerprint, (2) investigated how page interaction using Selenium’s interaction
API is recognisably different from human interaction, (3) incorporated our findings
on interaction into HLISA, a new interaction library for Selenium.

We conclude that fingerprint hiding – in the sense that first-party bot detection
can be mostly prevented – is effective. However, we find that spoofing properties in
JavaScript can lead to website breakage. This observation, in general, is not new,
but we were surprised that even simple changes to only the navigator object already
caused breaks. As such, we advise investigating the compatibility of stealth plugins
before using them in large-scale studies. HLISA is publicly available as a Python
library [ART-IMC21]. Our spoofing extension can be found in the official OpenWPM
repository [ART-IMC21-2].

134



Chapter 8 – Generic Detection of Web Bots

To the best of our knowledge, HLISA is the first comprehensive interaction API
that allows Selenium-based bots to hide identifiable behaviour. Based on the concep-
tual evaluation of an arms race between interaction detectors and simulators, HLISA
significantly raises the bar for detectors. Before HLISA, bot interaction was detectable
by its artificial nature. To detect HLISA, an interaction-based detector must compare
the observed interaction to a model of human behaviour. We hope our findings help
the research community to improve the reliability of web measurements.

Future work. HLISA’s approximation of human behaviour can be further defined.
First of all, HLISA’s models of human interaction are based on an extremely small
set of data. Extending the experiments with more subjects can improve the models
underlying HLISA’s interaction. Secondly, the interaction of scrolling and mouse
movement can be further refined. Mouse movements especially are a rich source
for analysis in studies in the human-computer interaction field [PT01; LB13; Fit54].
Related, the simulation of scrolling could be furthered to account for Firefox’s smooth
scrolling setting. With the availability of large data sets, HLISA could also leverage
machine learning to generate interaction.

The conceptual discussion of HLISA’s limitations offers a framework to reason
about its capabilities but lacks concrete data. A practical evaluation would be desir-
able, but such necessitates detectors. To the best of our knowledge, no study to date
has proposed a methodology to identify unknown interaction detectors in the wild
with certainty.

Finally, our findings with respect to side effects of fingerprint overriding suggest
that an investigation comparing stealth extensions is merited. In particular, such an
investigation should elucidate how often they cause errors on the visited site and how
often they are detected.

135





Chapter 9

Case Study: Overcoming specific
Bot Detection

The premise of web measurement frameworks is that they measure what
regular browsers would encounter on the Web. In practice, deviations due
to the detection of automation have been found. To what extent automated
browsers can be improved to reduce such deviations has not been investi-
gated in detail so far. This chapter investigates a specific web automation
framework: OpenWPM, a popular research framework specifically designed
to study web privacy. We analyse (1) detectability of OpenWPM, (2) re-
silience of OpenWPM’s data recording, and (3) prevalence of OpenWPM
detection.

Our analysis (1) reveals that OpenWPM is easily detectable. Our in-
vestigation of OpenWPM’s data recording integrity (2) identifies novel
evasion techniques and previously unknown attacks against OpenWPM’s
instrumentation. We investigate and develop mitigations to address the
identified issues. Finally, in a scan of 100,000 sites (3), we observe
that OpenWPM is commonly detected (∼14% of front pages). Moreover,
we discover integrated routines in scripts specifically to detect OpenWPM
clients. In conclusion, our case study shows that even the most popular
web measurement framework, OpenWPM, is more gullible than expected,
and this gullibility is rarely accounted for in studies.

This chapter is based on the following publication:

How gullible are web measurement tools? A case study analysing
and strengthening OpenWPM’s reliability. Benjamin Krumnow, Hugo
Jonker, and Stefan Karsch. In Proc. 18th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT’22), DOI:
10.1145/3555050.3569131, 2022, [CoNEXT22].
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9.1 – Introduction

9.1 Introduction

The goal of web studies is to analyse what regular visitors would experience on the
Web. This relies on an (often unstated) assumption that the data as collected is
representative of what human-controlled browser would encounter. Previous investi-
gations [EN16; ESORICS19; ZBO+20; JSS+21] have shown that this is not always the
case: websites have been found to omit content (advertisements, video, JavaScript ex-
ecution, login forms, etc.) or require completion of a captcha for automated clients.
This casts doubts on the validity of such analyses, especially since this effect is of-
ten not accounted for (see Section 9.2). In some cases, studies implement their own
automation tooling [KL21; CLB+22] to bypass detectors targeting such frameworks.
While such an approach can be technically sufficient, the additional steps may also
shift or even exacerbate the detection problem (see Section 8.2). Another approach
is to use third-party plugins that hide differences in the fingerprint (e.g., [JSS+21]).
Again, this could be a reasonable approach, but 100% fidelity should not be assumed
– though in practice, it often is. This raises the question: how gullible are frameworks
as measurement tools? That is, to what extent can websites fool web measurement
tools?

To analyse a website, a web measurement tool visits the site and collects whatever
data it needs for its analysis. In our view, there are two key issues that affect whether
websites can fool the tool. First: detectability. Detectability enables a website to
deliver innocuous content to analysers instead of what regular visitors would receive (a
so-called cloaking attack, see [ITK+16]). Second, the resilience of data collection, that
is: able to collect sought-after data even in adverse conditions. Websites may employ
obfuscation and other tricks to thwart analysis, e.g., sprinkling random breakpoints
throughout the code to hinder analysis [MJ21]. A malicious website would use tricks
specifically targeting analysers to hide its wrongdoings.

We investigate the extent to which these two issues affect the reliability of web
measurement tools by means of a case study. Many web measurement tools are
one-off creations, used to perform a specific analysis but not designed for use cases
beyond that (e.g., [HSL+14; LSK+16; BAR+16; ESORICS19]). Amongst the few
more general web measurement frameworks, most have not gained traction in the
community and have been used little beyond their initial study so far (e.g., FPDetec-
tive [AJN+13], Crawlium [MHB+17], VisibleV8 [JK19]). In contrast, OpenWPM, a
framework [EN16] for measuring web privacy, has been used in over 70 peer-reviewed
publications (see Section 9.2). Studies based on OpenWPM keep frequently appearing
in top conferences (see Table C.2). Its maturity, as well as its popularity and impact
in the web measurement community, make it an ideal subject for our case study.

OpenWPM offers increased stability, fidelity and easy access to measurement func-
tionality on top of Selenium + WebDriver (a browser automation framework). The
framework can be run under either Ubuntu or macOS. It consists of four parts (Fig-
ure 9.1): a web client, automation components, instrumentation for measurements,
and a framework. As a web client, OpenWPM uses an unbranded Firefox browser.
In contrast to a regular Firefox browser, this allows running unsigned browser ex-
tensions. There are various measurement instruments implemented via one browser
extension. Each facilitates recording a specific aspect, such as JavaScript calls, cook-
ies, or HTTP traffic. Last is the framework, which acts as a maestro orchestrating
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Figure 9.1: Components of the OpenWPM framework

work. Its purpose is to control browsers and data collection. It also adds various
functionalities, such as monitoring for browser crashes and liveliness, restoring after
failures, loading input data, etc.

Contributions. In this chapter, we provide the first thorough analysis of Open-
WPM’s reliability, which involves four main contributions.

• We provide the first analysis of OpenWPM’s detectability based on both conven-
tional fingerprinting (see Section 7.4) and template attacks [SLG19] techniques.
We find previously not reported, identifiable properties for every mode of run-
ning OpenWPM (headless, Xvfb, etc.), even allowing to distinguish between
these modes.

• We look for bot detectors in the Tranco Top 100K sites via both static and
dynamic analysis. We find a drastic increase of Selenium-based bot detection
compared to earlier studies. In addition, we find detectors in the wild specifically
targeting OpenWPM.

• We explore how sites can attack OpenWPM’s data collection. We find various
attack vectors targeting OpenWPM’s most commonly used instruments and
implement proof-of-concept attacks for these.

• We harden OpenWPM against poisoning attacks and detection. This hides all
identifiable properties when run in regular mode and addresses the identified
attacks against OpenWPM’s instrumentation. We evaluate its performance
against vanilla OpenWPM. The number of cookies received is severely impacted.
Conversely, ads/tracker traffic is hardly impacted.

Ethics and responsible disclosure. Our work aims to make OpenWPM a more
reliable measurement framework. We responsibly disclosed our findings and shared
fixes of the identified issues. This helps to make OpenWPM less detectable and,
therefore, its results more reliable. Of course, a less detectable web bot may itself
be abused. For attacking specific sites, our improvements do not greatly impact the
attack surface: a less detectable OpenWPM is a fine tool for studying the Web, but
not for a targeted attack on a specific site. For attacks that span thousands of sites
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Table 9.1: Measurement characteristics in 72 peer-reviewed studies that are built
upon OpenWPM

Category Studies

Measures
– HTTP traffic 56
– cookies 35
– JavaScript 22
– other 6

Run mode
– unspecified 59
– virtualisation 16
– headless 7
– regular mode 3
– Docker 2
– Xvfb 2

Category Studies

Interaction
– no interaction 55
– clicking 11
– scrolling 8
– typing 5

Subpages
– not visited 53
– visited 19

Bot detection
– ignored 55
– discussed 17

◦ uses mitigation 8

(e.g., click farming), our improvements do not help: disguising as a regular browser is
in- sufficient to overcome contemporary defences. For that, site-specific fingerprints
are needed [TJM15]. Thus, existing re-identification-based countermeasures (e.g.,
rate limiting) are not impacted.

Availability. Our stealth extension and collected data set (see Section 9.6) are
available online for follow-up research [ART-CoNEXT22]. The OpenWPM maintain-
ers presently integrate our stealth extension into OpenWPM’s code base.1

Outline. In the remainder of this chapter, we provide a review of previous stud-
ies that used OpenWPM for their experiments (Section 9.2). Then, we investigate
OpenWPM’s detectability (Section 9.3) and use the results to scan the Web for sites
with capabilities to detect OpenWPM (Section 9.4). After that, we take the per-
spective of a hostile website and evaluate various attacks against OpenWPM’s data
recording facilities (Section 9.5). In the last part, we report on our implementation
of an improved OpenWPM version and test it against bot detectors in the wild (Sec-
tion 9.6). We close this chapter with a review of our findings and recommendations
for measurement tools and studies (Section 9.7).

9.2 Use of OpenWPM in previous studies

To understand how OpenWPM is being used, we review the different studies per-
formed to date with OpenWPM. In June 2022, 76 works, of which 57 peer-reviewed,
were listed2 as using OpenWPM. We further added 15 recent studies that had not yet
been listed. For each study, we check the following: what is measured, whether sub-
pages are visited, whether interaction is used, and what run mode is used. Table 9.1
summarises our findings. For a detailed view per study, we refer to Appendix C.

1https://github.com/openwpm/OpenWPM/pull/1036
2https://webtap.princeton.edu/software/
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The measures category tallies how many studies used OpenWPM’s various mea-
surement instruments: HTTP traffic, cookies, and JavaScript. Each of these measures
may be impacted individually due to bot detection. We tally how many studies mea-
sure HTTP traffic, cookies, and JavaScript, respectively. Interestingly, while most
studies use OpenWPM to record HTTP traffic, a few (e.g., [LWP+17; EAW+19;
SII+19; CNS20]) have used it as automation instead as a measurement tool. These
are tallied under ‘other’ in Table 9.1. The other categories pertain to aspects that
may impact detectability. In each case, it is currently unknown whether these play a
role in bot detection. With respect to the interaction category, we note that no study
mentioned implementing interaction mechanisms. Therefore, we assume all studies
used OpenWPM’s default interaction functionality.

With respect to the run mode category, note that not all studies provide informa-
tion about this. Nevertheless, the used run mode may impact detectability [HBB+14]
and thus should be considered. We, therefore, consider all currently supported modes:

a. unspecified : does not specify mode,

b. regular : uses a full Firefox browser,

c. headless: uses Firefox version without a GUI,

d. Xvfb: as regular, with visual output redirected to a buffer,

e. Docker : runs OpenWPM within a Docker container,

f. External virtualisation: uses virtual machines to run OpenWPM, possibly in
cloud infrastructure.

The modes a to c refer to the browser, while the others relate to the environment.
Consequently, OpenWPM allows picking only one run mode which is either regular,
headless, or Xvfb-mode. Docker or external virtualisation can be used in conjunction
with one of the modes defining the browser.

Lastly, we track whether the studies considered bot detection at all and, if so,
whether they used OpenWPM’s built-in anti-detection features. Aside from studies
investigating bot detection directly, only very few consider fingerprinting [UDH+20]
or cloaking [LLZ+19; CUT+21] as a potential risk for valid results.

9.3 Fingerprint surface of OpenWPM

We begin by addressing the research question how can OpenWPM be distinguished
from human-controlled web clients? In general, a website operator looking to identify
OpenWPM clients can either probe for identifiable properties (i.e., fingerprinting)
or attempt to recognise OpenWPM’s interaction. The latter is due to Selenium,
whose interaction we studied in detail in Chapter 8. Those results fully carry over to
OpenWPM. This leaves uncertainty about how OpenWPM’s fingerprint distinguishes
it from other clients and bots. In line with previous works, we call that part of a
browser fingerprint that distinguishes a particular type of client from other types the
fingerprint surface [TJM15]. Determining the fingerprint surface of an OpenWPM
client requires a way to find its properties that deviate from properties and values of
other clients. In Chapter 7 we showed that it suffices to consider differences within
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Table 9.2: Summary of deviating properties of each OpenWPM setup (v.017.0) con-
trasted with OpenWPM’s Firefox (v.90)

macOS Ubuntu Docker
10.15 18.04 19.03.6

RM HM RM HM Xvfb RM

navigator.webdriver is true ✓ ✓ ✓ ✓ ✓ ✓
screen dimension prop. ✓ ✓ ✓ ✓ ✓ ✓
screen position prop. ✓ ✓ ✓ ✓ ✓ ✓
font enumeration – – – – – ✓
timezone is 0 – – – – – ✓

navigator.languages prop. – 43 – 43 – –
deviating WebGL prop. – 2,037 – 2,061 18 27

With instrumentation:
- through tampering +253 +253 +252 +252 +252 +252
- added custom functions +1 +1 +1 +1 +1 +1

RM: Regular mode; HM: Headless mode; Xvfb: X virtual frame buffer mode.

the client’s ‘browser family’, that is, fingerprint differences with those clients who
use the same rendering engine and JavaScript engine. By comparing the results
for multiple clients of the same browser family, differences unique to each client are
brought to light. In previous works, two approaches for browser fingerprinting were
used: probing a specific list of properties (see Section 7.5), or using an automated
approach to traverse the DOM [SLG19]. While there is overlap between the results
of these methods, neither offers a complete superset of the other. We combine the
results of both approaches to determine the fingerprint surface.

Limitations. Fingerprint-based bot detection requires identifiable properties of bots,
such as deviations from regular user clients or inconsistencies. While we use state-
of-the-art tooling to identify outstanding characteristics in OpenWPM at the HTTP
layer and above, we cannot guarantee that all properties or methods are covered.
Furthermore, our method compares the fingerprint of OpenWPM to the fingerprint
of a regular (equivalent version) Firefox. Any differences cannot be due to the browser
then. However, this does not guarantee that these differences are unique compared
to other browsers. To reduce the likelihood of this, we validate the found fingerprint
surface against several other web browsers (see Section 9.3.3).

9.3.1 How recognisable is OpenWPM?

We determine OpenWPM’s fingerprint surface by comparing its client to a stan-
dalone version of the same Firefox browser. Any differences must originate in the
hosting environment, the framework itself, the base implementation, the added au-
tomation, or measurement components. Note that it is already well-known that
OpenWPM’s underlying automation component, Selenium, is trivially recognisable
by the navigator.webdriver property,3 which OpenWPM does not address. We are

3https://www.w3.org/TR/webdriver/#x4-interface
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looking for further distinguishing aspects. To account for possible effects of the vari-
ous run modes of OpenWPM on the fingerprint surface, we determine variations for
each setup on Ubuntu and macOS. Table 9.2 summarises the identifying properties
found. In addition to ways to recognise OpenWPM’s instrumentation, we also identify
ways to recognise display-less scraping (headless or Xvfb mode), and virtualised run
mode. Thus, every mode of running OpenWPM is identifiable as a web bot. We also
checked combinations of modes, such as using Docker and headless together. How-
ever, we could not gain new insights from these setups; wherefore we do not discuss
them further.

Recognisable via screen resolution, window position. We found two new
identification measures that work against all modes of OpenWPM: screen resolution,
set by OpenWPM, and window position, set by the browser automation framework.
OpenWPM screen properties use standard values and cannot be changed (see Ta-
ble 9.3). On macOS, all browser instances will use the same absolute coordinates; on
Ubuntu, each window shifts by the same offset when using regular mode.

Table 9.3: Screen properties for various configurations

OS mode resolution window x y offset (x,y)

macOS regular 2560 x 1440 1366 x 683 23 4 0, 0
headless 1366 x 768 1366 x 683 4 4 0, 0

Ubuntu regular 2560 x 1440 1366 x 683 80 35 8, 8
headless 1366 x 768 1366 x 683 0 0 0, 0
xvfb 1366 x 768 1366 x 683 0 0 0, 0
docker 2560 x 1440 1366 x 683 0 0 0, 0

Suppressing output → more identifiable. Suppressing output to display (by
using Xvfb, headless, or Docker) adds a significant number of differences. In headless
mode, the lack of a WebGL implementation leads to thousands of missing properties.
We also observe that this mode adds 43 new properties to the navigator.language

object. Xvfb mode uses a regular Firefox browser, which contains WebGL function-
ality. Nevertheless, Xvfb mode causes 5 changed and 13 missing properties. Inter-
estingly, both headless and Xvfb mode allow the detection of missing user elements
by accessing the property screen.availTop. This describes the first y-coordinate that
does not belong to the user interface.4 In display-less modes, this is always zero, while
regular browsers have larger values.

Virtualisation leaves identifiable traces. Using OpenWPM’s Docker container
causes the WebGL vendor property to contain the term VMware, Inc. (Table 9.4)
– clear evidence for the use of virtualisation [VRR+20]. In addition, the Docker
environment reduces the number of available JavaScript fonts to one (Bitstream Vera
Sans Mono), nor does it provide information about the time zone.

4https://developer.mozilla.org/en-US/docs/Web/API/Screen/availTop
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Table 9.4: Selected deviations, Ubuntu no-display modes

mode WebGL vendor avail{Top—Left}

RM AMD AMD TAHITI 27, 72
HM Null 0, 0
Xvfb Mesa/X.org llvmpipe (LLVM 12.0.0,. . . ) 0, 0
Docker VMware, Inc. llvmpipe (LLVM 10.0.0,. . . ) 27, 72

Figure 9.2: Properties in a (A) original object or (B) by the instrumentation polluted
object

Using JS instrumentation has large effect on detectability. We checked if
using any of OpenWPM’s various instruments has any effect on its fingerprint sur-
face. The only differences occur when using the JavaScript instrument. First, this
instrument overwrites certain of the browser’s standard JavaScript objects, which
can be detected by using the toString function of a function or object (see List-
ing 9.1). Another identifying aspect of this instrument is the presence of a function
in the window object (window.getInstrumentJS), which is not a part of the ECMA
specification,5 nor present in any common desktop browser (Firefox, Safari, Chrome,
Edge, and Opera). Third, OpenWPM’s wrapper functions can be found in stack
traces. For that, a script needs to provoke an error in any overwritten function and
catch the stack trace to successfully identify a modification by OpenWPM. Lastly,
the JavaScript instrument ‘pollutes’ prototypes along the prototype chain of an ob-
ject. Instrumenting is done by changing the prototype of an object, as well as all
its ancestor prototypes. However, the properties of later ancestor prototypes are all
added to the first ancestor prototype (see Figure 9.2). This distinguishes a visitor
with instrumentation from one without.

9.3.2 How stable is the fingerprint surface?

We explored our determined fingerprint surface’s stability, as new Firefox and Open-
WPM versions may appear frequently. To that end, we repeated our experiments
for older versions of OpenWPM (0.10.0 and 0.11.0). In general, we found that the
fingerprint surfaces largely overlap. For example, on MacOS, the number of WebGL
deviations in headless mode increases to 2,037 in OpenWPM 0.17.0, from OpenWPM
0.11.0’s 2,022. In the oldest OpenWPM version (0.10.0), we find that the JavaScript

5https://262.ecma-international.org/5.1/
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instrument adds two properties instead of one to the window object (jsInstruments
and instrumentFingerprintingApis). In addition, we also investigated whether
using an unbranded browser (as OpenWPM does) impacts OpenWPM’s fingerprint.
We did not find differences between branded and unbranded versions.

Using outdated browsers, however, does impact the fingerprint. For example,
Google’s reCAPTCHA service assigns a higher risk to older browser variants [SPK16c].
Releases of OpenWPM do not appear synchronously with Firefox. As a result, spe-
cific time frames exist where the OpenWPM client uses older Firefox versions than
regular users. Table 9.5 summarises the migration of Firefox versions6 in the Open-
WPM Framework since version 0.10.0.7 Between the release of Firefox 77 (March
2020) and Firefox 104 (current at the time of writing), were 780 days. The period
where OpenWPM was shipped with an outdated version amounts to 540 days (69%).

Table 9.5: Migration to newer Firefox releases in OpenWPM

Firefox release date OpenWPM integration date outdated

104.0 07/23/22 53 days
101.0 05/31/22
100.0 05/03/22 0.20.0 05/05/22 30 days
99.0 04/05/22
98.0 03/08/22 0.19.0 03/10/22 58 days
96.0 01/11/22
95.0 12/07/21 0.18.0 12/16/21 69 days
91.0 08/10/21
90.0 07/13/21 0.17.0 07/24/21 11 days
89.0 06/01/21 0.16.0 06/10/21 9 days
88.0 04/19/21 0.15.0 05/10/21 48 days
87.0 03/23/21

86.0.1 03/11/21 0.14.0 03/12/21 87 days
84.0 12/15/20
83.0 11/18/20 0.13.0 11/19/20 58 days
81.0 09/22/20
80.0 08/25/20 0.12.0 08/26/20 29 days
79.0 07/28/20

78.0.1 07/01/20 0.11.0 07/09/20 9 days
78.0 06/30/20
77.0 06/03/20 0.10.0 06/23/20 20 days

9.3.3 Validation of the fingerprint surface

Our measurement of OpenWPM’s fingerprint surface should be validated to ensure our
methodology did not introduce measurement artefacts. Moreover, our method only
contrasts OpenWPM to Firefox; other browser fingerprints could contain elements
from our measured fingerprint surface. To validate the fingerprint surface, we test
its distinctiveness from other consumer browsers and platforms. We implemented an
OpenWPM detector that uses four test strategies for the entire measured fingerprint
surface to identify OpenWPM amongst web clients:

6These are listed on Mozilla’s official site: https://www.mozilla.org/en-US/firefox/releases/
7We use dates as specified in OpenWPM’s changelog: https://github.com/openwpm/OpenWPM/c

ommits/master/CHANGELOG.md
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1 window.canvas.getContext.toString();
2 // output of .toString when not instrumented

3 "function getContext() {

4 [native code]

5 }"

6
7 // output of .toString when instrumented

8 "function () {

9 const callContext = \

10 getOriginatingScriptContext(!!logSettings.logCallStack);

11 logCall(objectName + "." + \

12 methodName, arguments, callContext, logSettings);

13 return func.apply(this, arguments);

14 }"

Listing 9.1: Detectability of OpenWPM’s JavaScript instrumentation

1. test for presence of a DOM property

2. test for absence of a DOM property

3. test if a native function was overwritten

4. compare a DOM property with an expected value

We tested the detector by setting up four machines, two MacBooks and two PCs, with
Ubuntu. On each machine, we used OpenWPM and common browsers (Chrome, Sa-
fari, Opera and Firefox). We tested all distinguishing properties from Table 9.2. Our
detector site was able to correctly identify OpenWPM every single time. Except for
a few WebGL- and screen-related properties, all properties uniquely identify Open-
WPM. As reported in Section 9.3.1, screen properties differ per operating system.
For regular modes, the screen resolution depends on the system setup (display size
and selected resolution). For WebGL properties, we found that these also occur on
some non-OpenWPM clients (roughly 200 of 4K properties). After removing these,
the fingerprint surface still contained a sizeable number of identifying WebGL and
screen properties.

9.4 Incidence of OpenWPM detection

To assess the extent of OpenWPM detection in the wild, we conduct a large-scale
measurement for client-side bot detection. In detail, we focus on scripts with capabil-
ities to detect OpenWPM, i.e., scripts with routines to access properties unique for
Selenium-based bots and OpenWPM. We find both general Selenium detectors and
OpenWPM-specific detectors.

9.4.1 Data acquisition and classification

Methodology. Previous automated approaches to identify bot detectors have either
relied on static (see Section 7.5) or dynamic analysis [JK19]. The idea behind static
analysis is to identify code patterns in source code that link to known bot detectors
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Table 9.6: Number of websites with Selenium detectors

# sites static dynamic union

identified 32,694 19,139 38,264
without false positives / ‘inconclusive’ 15,838 16,762 18,714

or use specific bot-related properties. A limitation is that scripts may create code
dynamically, which will be missed out by static analysis. Moreover, minification and
obfuscation further increase the false negative rate of static analysis. The alternative
approach, dynamic analysis, is to monitor JavaScript calls that identify a script as
bot detector based on access to bot-related properties. Dynamic analysis does cover
dynamically-generated scripts. Moreover, it does not monitor the code itself, only
executed calls. An upside of this is that neither minification nor obfuscation affects
the analysis. On the other hand, code that happens not to be executed during the
run, is not analysed. Both static and dynamic analysis have been able to identify
some bot detectors in the wild. It is unclear whether and to what extent the results
of the methods differ in practice for finding web bot detectors. We combine both
methods to increase coverage.

Setup. In order to assess the extent of client-side bot detection, we scan the top
100K websites of the Tranco list [LVT+19].8 We set up an instance of OpenWPM
running Firefox in regular mode. During a site visit, our OpenWPM client stores
a copy of any transmitted JavaScript file and records JavaScript calls. We wait
an additional 60 seconds after every completed page load9 to give websites time to
perform JavaScript operations. In addition, our client measures the presence of bot
detection on subpages by opening a maximum of three URLs extracted from a site’s
landing page. For selecting subpages, we consider only URLs linking to the same
domain. We use the scheme eTLD+1 to identify domains. To account for websites
that use same-origin requests to redirect clients to foreign domains, our client checks
if a foreign domain was entered after following all redirects.

Accessing OpenWPM’s fingerprint surface is cause to consider a script as a bot
detector. However, certain scripts may access fingerprint surface attributes for other
purposes, such as checking supported WebGL functionality. To reduce such false pos-
itives, we only classify a script as bot-detecting when it accesses properties pertaining
to browser automation or are unique to OpenWPM (see Section 9.3.1). This leaves
only the following: navigator.webdriver, which is specific to WebDriver-controlled
bots; and the new identifying properties introduced by OpenWPM’s instrumentation:
getInstrumentJS, instrumentFingerprintingApis, and jsInstruments. Table 9.6
shows the results of the data collection and classification.

Limitations. Inherent in the above approach are several assumptions that can im-
pact the results. First, our approach relies on the fingerprint surface we established.
Detectors based on other methods (e.g., mouse tracking [CGK+13]) will be missed.

8https://tranco-list.eu/list/WV79
9As determined by the document.readyState property.
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Second, we do not account for cross-site tracking. A third-party tracker could clas-
sify our client as a bot on one site and would need only to re-identify the client on
another site, e.g., using IP filtering or regular browser fingerprinting. This amounts
to a form of website cloaking – serving different content to specific clients. To what
extent third-party tracking in general employs cloaking is a different study and left
to future work. Both these limitations may cause an underestimation of the number
of detectors (false negatives). As such, our approach approximates a lower bound on
the number of detectors in the wild.

Pre-processing for static analysis. Within the static analysis, we pre-process
scripts to undo straightforward obfuscation. We derive the respective encoding, trans-
form hex literals to ASCII characters, and remove code comments. We apply our static
analysis to scripts we collected during our scan of the Tranco Top 100K, resulting in
1,535,306 unique scripts.

To identify access to OpenWPM’s fingerprint surface, we develop patterns. This
process needs multiple iterations to reduce false positives. Our very first run used pat-
terns matching strings literally. However, in the specific case of matching the term
webdriver, we found that this selects scripts that use this word in another context
than checking Selenium-driven Firefox browsers (cf., [JK19] and Chapter 7.5.2) for
conflicting bot detection properties with this term). In the next iteration, we used
patterns that take the context of the access to a property into account. For exam-
ple, the pattern navigator\[["']webdriver["']\]only matches if the webdriver

property is checked via the navigator object. Table 9.7 lists the patterns we explored
in the scope of our study. Finally, we manually checked a random subset to check
pattern performance. Only one pattern still introduced false positives; all its matches
were manually validated and false positives eliminated.

Table 9.7: Patterns evaluated within the static analysis

pattern false positives found

webdriver ✓
instrumentFingerprintingApis -
getInstrumentJS -
jsInstruments -
(?<! |-)webdriver(?! |-) ✓
navigator.webdriver -
navigator\[["']webdriver["']\] -

Using honey properties to catch iterators. For the dynamic analysis, every
recorded access to the fingerprint surface identifies a script with the potential to
detect OpenWPM as a bot. This will also be triggered by scripts that iterate over all
properties, e.g., for regular browser fingerprinting. Determining the purpose of such
iteration requires per-script manual inspection and goes beyond dynamic analysis.

To determine whether property iteration occurs, we extend our client’s navigator
and window object with ‘honey’10 properties. These honey properties are added on

10We are not aware of any previous works using such an approach.
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Table 9.8: Sites with scripts probing OpenWPM-specific properties

cz gs google.com ad1t

total 331 14 9 2
jsInstruments 331 5 2 2
instrumentFingerprintingApis 0 6 4 0
getInstrumentJS 0 3 3 0

cz: cheqzone.com, gs: googlesyndication.com, ad1t: adzouk1tag.com

the fly and use random strings as name. Hence, only a script using property iteration
would access all honey properties. We divide scripts that use property iteration into
two categories, based on access to the navigator.webdriver property: definitely
detecting bots, and inconclusive. Iterator scripts are classified as inconclusive if they
do not access navigator.webdriver, as all accesses to the fingerprint surface could
be due to property iteration. Scripts that iterate the navigator object will naturally
access the webdriver property. To check whether this access is only by iteration or
intentional, we distinguish between scripts that trigger our static analysis and those
that do not. Only scripts that do not surface in the static analysis are classified as
inconclusive.

9.4.2 How often is OpenWPM detected?

OpenWPM can be detected directly via OpenWPM-specific properties or indirectly
via properties of its underlying components (Selenium, WebDriver, etc.). Our results
show that when checking both front- and subpages, at least 16.7% of the Tranco Top
100K websites execute scripts that accessed Selenium properties. Moreover, we also
find four actors serving scripts that access OpenWPM-specific properties.

356 sites detect OpenWPM-specific properties. Most scripts we found recog-
nise OpenWPM by targeting Selenium. A small number of detectors also include
specific routines to detect OpenWPM itself. Overall, 356 sites executed scripts that
accessed OpenWPM-specific properties. These scripts were all included via third-
party domains belonging to four distinct providers. Table 9.8 summarises these de-
tectors and their detection method. Detectors on cheqzone.com were found by static
and dynamic analysis; detectors on the other three domains used some form of mini-
fication, obfuscation, or dynamic loading and were only found by dynamic analysis.
We investigated the four hosting domains by consulting whois records, EasyList,11

and the WhoTracksMe12 database. All domains are related to the advertising indus-
try. The domain cheqzone.com belongs to CHEQ, a company fighting ad fraud. The
scripts hosted by Google domains are included through Google’s reCAPTCHA ser-
vice. While we could not clarify the origin of adzouk1tag.com, we found this domain
listed in the EasyList for ad domains.

11https://easylist.to/easylist/easylist.txt
12https://whotracks.me/
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Figure 9.3: Sites with bot detectors on front- and subpages (depicted per 1K sites)

14% of sites detect bots on the front page. Figure 9.4 depicts the distribution
of detectors active on the front page of websites for static and dynamic analysis.
Dynamic analysis without considering property iteration identifies 12,208 sites with
detectors on the front page. Static analysis measures the number of sites where bot
detection could be triggered (11,897), including those where detection is present but
not (yet) executed, e.g., where detection is only triggered after hovering over certain
elements. While static and dynamic analysis identify a similar number of detectors
for each bucket, they do not fully overlap. Combining both provides a slight increase
in the presence of detectors (∼1.7K sites).

Deep scanning increases rate of detection by 5%-points. As discussed in
Section 9.2, 26% of studies conducted with OpenWPM investigated subpages. This
raises the question whether such studies are more often subject to bot detection,
that is: does bot detection occur more frequently on subpages? Figure 9.3 depicts
the occurrence of bot detectors on front pages and subpages. In general, studies
examining subpages are at greater risk of being detected: the number of sites with
active detectors increases by at least 37%. Hence, the average detection rate within
the Top 100K sites will increase. That is: the study will be exposed to more detectors.
Combining the results of both measurements, we see an increase of 5 percentage points
(from 14% to 19%).

9.4.3 Who employs bot detection?

We separated detectors into first and third parties to check whether sites employ
detection themself or use services by others. We find that the majority of sites include
detectors from third-party domains. We count how often scripts on these third-party
domains are included on scanned sites, tallying each third-party domain once per
site. Some sites include more than one detector; hence the total number of inclusions
exceeds the number of sites with detectors. Overall, we count 3,867 first-party detector
scripts and 21,325 third-party detector scripts.
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Figure 9.4: Detectors found on front pages

Figure 9.5: Common categories of sites with detectors

We explore what sites include detectors. We collect all categories for the identified
16K websites with detectors using Symantec’s site review service (https://sitere
view.norton.com/). Sites may be assigned multiple categories; we tally each listed
category for such sites. Figure 9.5 depicts the 16 most often tallied categories for both
first-party detectors (4,198 times) and third-party detectors (16,323 times). News sites
are responsible for 18.4% of all third-party inclusions, followed by Technology (9%)
and Business (7%). Interestingly, the ranks for Shopping (16.4%) and News (5%)
switch for first-party detector inclusions. Moreover, sites in the categories Finance
(8% vs 3%) and Travel (7% vs 2%) make up for a larger portion of the set of first-party
inclusions than for third parties.

Third-party bot detection typically serves the advertisement industry.
Following up on the previous point, we investigated the origins of third-party de-
tectors. Table 9.9 breaks down the most commonly included domains. The top 10
domains account for two third of inclusions. WhoTracksMe categorises trackers ac-

151

https://sitereview.norton.com/
https://sitereview.norton.com/


9.5 – Attacking JavaScript recording

Table 9.9: Domains hosting 3rd-party detector scripts

hosting domain # inclusions (1/site) %

all 21,325 100%
1 yandex.ru 3,848 18.04%
2 adsafeprotected.com 2,309 10.83%
3 moatads.com 2,165 10.15%
4 webgains.io 2,091 9.81%
5 crazyegg.com 1,552 7.28%
6 intercomcdn.com 1,061 4.98%
7 teads.tv 854 4.00%
8 jsdelivr.net 423 1.98%
9 mxcdn.net 416 1.95%

10 mgid.com 402 1.89%
11+ remaining 704 domains 6,204 29.1%

cording to purpose. Using this, we find that the bot-detecting scripts on the most
commonly included domains can serve a variety of purposes. For example, yandex.ru
offers scripts used for advertising, content delivery network, site analytics, social me-
dia, and others. Other uses include web analytics (crazyegg.com), CDN (jsdelivr.net)
and live chat (intercomcdn.com). However, bot detection is most commonly deployed
by advertisers (e.g., domains 2,3,4,7,9, and 10 in Table 9.9).

The vast majority of first-party detectors are embedded third parties. To
determine the origins of first-party bot detection scripts, we look for similarities be-
tween their inclusions of detectors. To do so, we hash the scripts and check for
structural similarities in script URLs (see Table 9.10). Scripts provided by Akamai,
Incapsula, Cloudflare, and PerimeterX follow the same script pattern and can be
easily recognised. We found various similarities among unrelated sites. Scripts orig-
inating from Akamai occur the most frequently (1,004 sites). Second is Incapsula
(998 sites), third is an unknown bot detector (659 sites), and fourth is Cloudflare
(486 sites). Together, these top four originators account for 3,147 out of 3,867 sites
(88%) where we found first-party detectors. In contrast to the purpose of third-party
detectors, first-party detectors are not supplied by advertisement companies. More-
over, Akamai, Incapsula and Cloudflare all offer commercial bot detection services.
With that in mind, one should expect sites with first-party detectors to tailor their re-
sponses to detected bots (e.g., throttling, blocking, withholding resources, and serving
captchas).

9.5 Attacking JavaScript recording

We have found detectors specifically targeting OpenWPM. This raises the question
to what extent a malicious site could harm an OpenWPM study. We investigate
whether a malicious website or third party could corrupt OpenWPM’s data collec-
tion process. In particular, we consider an attacker that can deliver arbitrary content
(HTML, cookies, JavaScript), but cannot break the browser’s security model. To
do so, our focus resides on attacks against the integrity or completeness of mea-
surements. More specifically, we aim to attack the resilience of OpenWPM’s most
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Table 9.10: Similarities in first-party detectors

origin URL path similarities # sites

Akamai domain/akam/11/. . . 1,004
Incapsula domain/ Incapsula Resource?. . . 998
Unknown domain/asssets/{hash of 31-32 bits length} 659

domain/resources/{hash of 32-33 bits length}
domain/public/{hash of 32-33 bits length}
domain/static/{hash of 34 bits length}

Cloudflare domain/. . . /cdn-cgi/bm/cv/2172558837/api.js 486
PerimeterX domain/. . . /{8 character string}/init.js 134

commonly used instruments: HTTP traffic, cookie recording, and JavaScript call
recording. Both HTTP and cookie instruments are simple wrappers around browser
functionality. Breaking them thus requires breaking the browser, which is outside the
attacker model. The JavaScript instrument, on the other hand, needs to supply all
its monitoring functionality itself. It is, therefore, clearly in the scope of our attacker
model.

Since the instruments focus on data recording, we investigate attacks on data
recording. More specifically, we consider:

1. whether data recording may be prevented;

2. whether fake data can be injected into the data recorder;

3. whether already recorded data can be deleted or altered;

4. finally, whether the data recording is complete.

Instruments in OpenWPM are implemented as a browser extension. Extensions
are isolated to protect higher privilege APIs from access by untrusted code. Website
scripts thus cannot directly interact with extensions. However, both extension and
website scripts can read and change the DOM, opening the door for injection attacks
against extensions that read the DOM. We conducted source code analysis for each
instrument under investigation to identify vulnerabilities to such attacks. Below we
discuss the found vulnerabilities.

Limitations. As we focus on data recording, the scope of our evaluation is limited
to OpenWPM’s instruments. Vulnerabilities could also be introduced by other Open-
WPM components (see Section 9.1). Furthermore, we used manual code analysis;
automated code analysis, such as code scanners or fuzzers, may give more results. To
detect false positives, we validate the findings of the code analysis by implementing
proof-of-concept attacks.

9.5.1 How to prevent recording?

We found two ways to prevent OpenWPM from recording JavaScript: disrupting
communication to the data recorder and CSP stopping JavaScript injections.
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By disrupting communication. We found a vulnerability that allows a website
to turn off the recording of JavaScript calls in the JavaScript instrument. In more de-
tail, the JavaScript instrument overwrites several API functions which use the event
dispatcher to send messages when called. The event dispatcher then notifies the
JavaScript instrument’s back end to record the corresponding API call. To prevent
an attacker from silently undoing these hooks, OpenWPM also hooks into (and thus:
records access to) setters and getters to these API functions themselves. However,
the event dispatcher itself is not protected. Thus, we can alter the event dispatcher to
inject our own messages and manipulate messages sent to OpenWPM (Listing 9.2).
To carry out this attack, the attacker overrides the event dispatcher to block all mes-
sages (all events from instrumented objects). This would already block OpenWPM
recording by breaking any JavaScript API calls. However, this also would break a
website’s own JavaScript. To block only OpenWPM messages, the block needs to be
tailored. Conveniently, tags messages with an ID to identify any monitored objects.
Though this ID is randomly generated, it can easily be determined: simply trigger an
API call to a monitored object, acquire the random ID from the observed message,
and update the event dispatcher to only block messages containing this ID.

1 //Step I: Retrieve OpenWPM's random ID

2 function grabID() { return new Promise((resolve, reject) => {
3 let id;
4 document.dispatchEvent = function (event) {
5 id = event.type; document.dispatchEvent = dispatch fn;
6 if (id !== undefined) { resolve(id);
7 } else { reject(new Error(msg));}
8 }
9 // Perform an action to grab the ID

10 navigator.userAgent;});}
11 // Step II: Overwrite event dispatcher to block events

12 async function attackExtension() {
13 let id = await grabID();
14 document.dispatchEvent = (event) => {
15 if (event.type != id) { dispatch fn(event); // Dispatch event

16 } else {console.log("Event swallowed: " + event);}}}

Listing 9.2: Turn off the script recorder

By CSP stopping script injections. As stated above, OpenWPM overrides built-
in browser functions. To do so, OpenWPM injects a script to the DOM to enter the
page context, then calls that script to override the APIs, and finally, it removes the
script from the DOM to hide what happened. This happens before the website’s
JavaScript code is loaded. However, websites may use Content Security Policy (CSP)
to shield their users from XSS and data injection attacks. We found that the CSP
script-src directive can be used to prevent OpenWPM’s code injection. This will
lead to CSP violation in the JavaScript instrument, leaving the API functions un-
instrumented.
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9.5.2 Can fake data be injected?

Altering the event dispatcher not only allows an attacker to block data recording, it
also allows an attacker to learn the ID OpenWPM uses to record data. This is suffi-
cient to inject almost arbitrary messages to be recorded. The attacker simply creates
a custom event following the format used by OpenWPM’s JavaScript extension and
includes OpenWPM’s assigned event ID. This enables an attacker to define most of
the content of the resulting entry in OpenWPM’s recording, such as the executing
script URL or which function was called. Crucially, though, the website that origi-
nated the call is set outside of the browser by OpenWPM. The data sent by the event
dispatcher is properly sanitised by the back-end, which prevents spoofing this. We
can thus only inject fake data for the currently visited website. Note that a third
party included on the site can also execute this attack.

9.5.3 Can records be deleted or altered?

Whereas the previous attacks exploited a vulnerability in the DOM-parsing front-end
of the respective instruments, deleting already recorded data requires manipulating
the instrument’s back-end: SQLite. Attacking a database back-end requires an SQL
injection vulnerability. We found that the current OpenWPM’s data recording back-
end (OpenWPM v0.20.0) properly sanitises its inputs; we deem this sufficient and did
not investigate further.

9.5.4 Is data recording complete?

We evaluated whether data recording is complete or whether there are unobserved
channels. We found two attacks against completeness: a bypass of the JavaScript
instrument’s recording and silent delivery of JavaScript code.

JS instrument’s recording can be bypassed. We found a way to bypass Open-
WPM’s recording of JavaScript function calls. This attack again exploits OpenWPM’s
hooks to record function calls. In particular, the hooks must be attached to every
object that is to be observed. For every new window or iframe, this must be done
afresh. However, there is a long-standing bug in Chrome and Firefox [STK17], where
both browsers, under some circumstances, fail to inject scripts into iframes. We tested
if OpenWPM’s implementation is affected by this and found that this is indeed the
case.

Our evaluation of this attack involves two ways to access an iframe’s DOM,13

to create/execute iframes and their code: static vs. dynamic creation and immedi-
ate vs. delayed execution. Of these, immediate code execution (at creation time) is
required to exploit this bug successfully. None of the other parameters we tested
influenced the result. Listing 9.3 shows a proof-of-concept of this type of attack.

Silent delivery of JavaScript code. The HTTP instrument either stores all re-
sponse bodies (full coverage) or it can be set to store JavaScript files only. The latter
option significantly reduces stored content. The HTTP instrument should thus ensure

13window.frames[0] and frame.contentWindow
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1 setTimeout(() => {
2 let element = document.querySelector("#unobserved");
3 let iframe = document.createElement('iframe');
4 // HTML code for instantiating an iFrame

5 iframe.src = "unobserved-iframe.html";
6 element.appendChild(iframe);
7 iframe.contentWindow.navigator.userAgent;
8 }, 500);

Listing 9.3: Example of an unobserved channel

recording of the aforementioned JavaScript attacks, unless this instrument’s recording
can also be bypassed. We managed to achieve this with an HTTP instrument only
recording JavaScript files. For this mode, an attacker can silently deliver JavaScript
code by sending it as text and, on the client side, convert it to code and execute it.

To successfully bypass OpenWPM’s traffic recording of JS files, three aspects must
be accounted for:

i. the content-type attribute must be set to something other than text/javascript;

ii. the src attribute must not contain a “.js” extension;

iii. the delivered file is not automatically executed; this must be handled by a
different client-side script (e.g., using eval()).

Listing 9.4 shows an attack to bypass OpenWPM’s mode of recording only JavaScript
files. Note that the loaded resource does not include a file extension. Therefore, it
will be loaded as regular text, and its content does not occur in OpenWPM’s logging
of loaded JavaScript files. After loading, the content is executed via eval.

1 const stealth_code = "https://{attacker_domain}/cheat";

2 fetch(stealth_code) // load code from server

3 .then(res => res.text()) // convert code to JS-string

4 .then(res => eval(res)); // code execution

Listing 9.4: Example to silently load a JS file

9.6 Improving OpenWPM reliability

This section focuses on OpenWPM’s reliability as an instrument measuring the Web
as encountered by regular visitors. We explore how and to what extent reliability can
be improved. To do so, we design an approach to hardening OpenWPM’s instrumen-
tation and hiding its distinctive fingerprint (from here on referred to as WPM hide).
Our proof-of-concept successfully hides the telltale signs of OpenWPM from its fin-
gerprint and makes OpenWPM robust in the face of the discussed attacks in a lab
setting. To evaluate its effectiveness in an open world setting, we run WPM hide

against detectors in the wild and contrast its measurements with those of a regular
OpenWPM client.
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9.6.1 How to hide the fingerprint?

OpenWPM’s characteristic fingerprint varies with the various modes of running Open-
WPM. For example, in headless Firefox mode, the fingerprint surface is difficult to
hide due to headless mode’s lack of functionality when compared to regular browsers.
Hence, we focus on run modes where OpenWPM runs the browsers natively (Regular
Mode). For such modes, we achieve stealth by overriding properties without leaving
traces. These techniques can also be applied in other run modes (e.g., virtualisation).

The identifying properties for Regular Mode (see Table 9.2) relate to the webdriver
property, window position, and dimension. Of OpenWPM’s various instruments, only
the JavaScript instrument causes additional identifiable properties. Hiding these prop-
erties can be achieved by customising the browser or including additional code inside
a page’s scope. Implementing the former requires significant work, but it can hide
the fingerprint near-perfectly. The latter approach is far simpler to implement but
risks leaving residual traces. We chose the second option for our proof-of-concept,
as it can be seamlessly integrated within the current OpenWPM framework without
significant effort.

Our proof-of-concept addresses all five identifiability issues (see Section 9.3.1):

(1) the toString operation of overwritten functions must return the regular (un-
changed) output string;

(2) no additional property may appear in the DOM;

(3) stack traces must not show any signs of the instrumentation;

(4) prototype pollution must be avoided;

(5) prevent detection of automation components.

(1) Preserve toString output. For the first issue, we found that CanvasBlocker14

addresses this well. Its implementation successfully fools all our fingerprinting tests
(Section 9.3.1). CanvasBlocker creates a getter function with an identical signature
to the function that must be overwritten and attaches it to the DOM based on a
specific Firefox feature called exportFunction. The newly exported function is then
used to redefine the getter of an object’s prototype for a specific property. As a result,
the overwritten function returns the native code string like a default browser property
(Listing 9.1). Normally, accessing the getter of an object’s prototype leads to an error.
If this getter is replaced with a custom getter, that error is never thrown. This makes
tampering with properties via an object’s prototype detectable (see Section 8.2.1).
Calling the original getter from the customised getter results in the original error
being thrown, addressing this aspect of the fingerprint surface.

(2) Preserve clean DOM. The second issue arises during page load, prior to the
page’s JavaScript activation. The instrumentation injects its code as a script from the
content context into the page context, overwrites the needed properties, and removes
its code from the page context again. However, in practice, not all injected functions
are deleted. We update the instrument to overwrite all functionality directly from
the content context, thus keeping the page context clean.

14https://github.com/kkapsner/CanvasBlocker
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(3) Fake stack traces. The third issue requires the stack trace to show no signs
of instrumented functions. A web page can only access stack traces if errors occur.
Usually, if an error occurs, the stack trace would show that the called function is called
from inside the instrumentation. We address this by catching each error and throwing
a new error with properly adjusted values for the file name, column, message, and
line number.

(4) Avoid prototype pollution. The fourth issue relates to the pollution of an
object’s prototype. OpenWPM’s instrument modifies only the first prototype in the
prototype chain, not others further in the chain. We mitigate this by overwriting
properties per prototype. Nevertheless, this mitigation has a limitation: it is not pos-
sible to determine the function’s caller when a prototype has multiple descendants.
This means our mitigation may inadvertently instrument more objects than intended.
For prototypes located higher up the chain, the number of children increases, exacer-
bating this problem. Thankfully, most of the APIs that OpenWPM instruments by
default are provided by prototypes close to the bottom of their prototype chain.

(5) Prevent detection of automation components. The automation compo-
nents are detectable by window size, position, and webdriver attribute. For the latter,
our hidden version must set the navigator.webdriver property to false like a regular
Firefox browser. Since Firefox version 88, this flag is not user-settable.15 We override
the getter function of the navigator.webdriver property to return the default value
(false) in the same fashion as described in the previous section. To change OpenWPM
default window settings, we introduce a settings file that makes the window size and
position settable in OpenWPM.

9.6.2 How to mitigate recording attacks?

Sending secure messages from page context to background context (see
Section 9.5.1 and 9.5.2). As described in the previous section, a key benefit
from migrating to Firefox’s exportFunction is the ability to export higher privileged
browser functions into the page. Hence, we can port functionality to the page con-
text that is otherwise only available for content or background scripts of a browser
extension. We use this to secure our instrumented functions, as we now can use the
browser.runtime API to pass messages from the page to the background context.
It is crucial that such functionality is exported to a private scope of an overwritten
function to prevent access by other scripts in the page context. In addition, injecting
functionality this way does not violate the CSP script-src directive. Thus, using
the export function prevents the ‘restriction of script injections’, ‘turn recording off’
and ‘inject fake data’ attacks.

Intercepting DOM-modifying APIs (see Section 9.5.4). To address the tested
variants of incomplete recordings, we use CanvasBlocker’s frame protection. The ba-
sic idea is to intercept APIs used by page scripts to modify the DOM or create a new,
non-instrumented copy of the DOM. This ensures that each modification or newly con-
structed DOM contains the instrumentation. Our implementation covers five cases:

15https://bugzilla.mozilla.org/show_bug.cgi?id=1632821

158

https://bugzilla.mozilla.org/show_bug.cgi?id=1632821


Chapter 9 – Case Study: Overcoming specific Bot Detection

window constructors, DOMmodification API, DOM creation via the document.write
API, window mutations, and finally, the window.open API.

Filtered HTTP recording not robust (see Section 9.5.4). To the best of
our knowledge, there is no known way to distinguish JavaScript code from text that
is robust against a dedicated obfuscator. Therefore, an active adversary should be
assumed to be capable of hiding JavaScript in a way that would accidentally be filtered
out. Since this issue only arises in the presence of active adversaries, we recommend
not using any filtering in such a case.

9.6.3 Does hardening impact measurements?

We developed a proof-of-concept implementation to hide the tell-tale signs of automa-
tion and to mitigate the found attacks. We evaluate the impact of our proof-of-concept
implementation (from here on: WPM hide) on web measurements when encountering
bot detection in the wild. To that end, we contrast its results with vanilla OpenWPM
(from here on: WPM ) in HTTP traffic, cookies, JavaScript execution, and delivered
JavaScript files. We test on all sites with bot detectors, as found by the analysis in
Section 9.4. This list contains 1,487 sites with detectors. On these sites, we run WPM
and WPM hide in parallel (OpenWPM v.0.18.0, Firefox v.100, regular mode, HTTP,
JavaScript, and cookie instrument activated) and configure each browser to idle 60
seconds on a page after loading completed. We use the latest version of Firefox on
both machines; detection based on outdated browser versions thus does not apply to
our evaluation (see Section 9.3.2). We take steps to mitigate noise in measurements.
In particular, we avoid cross-client interference by separating both crawlers via two
individual machines and IP addresses. These residential IP addresses are located
in the same country, avoiding differences caused by geo-location and cloud-based IP
blocking [ITK+16]. We synchronise visits between both machines to further reduce
differences. Lastly, there is a risk that one-off events or single actors alter the mea-
surements. To prevent the former, we repeat our measurement three times (r1, r2,
and r3). This allows us to check whether an effect persists or is only temporary. To
address the latter, we test for significance. As the data sets are not normally dis-
tributed, we use the Wilcoxon signed-rank test with a confidence interval of 95%. In
general, our findings show that WPM encounters less privacy-invasive behaviour than
WPM hide . We executed all three runs of our experiment one after another between
the 20th and 21st of June 2022.

OpenWPM-induced CSP violations eliminated. Using WPM hide results in a
higher traffic volume, which increases with each run (see ‘total’ in Table 9.11). In
order to find where this difference originates, we group requests by their resource
type.16 Table 9.11 breaks the differences down per resource type, showing results for
data set r1; proportions are similar for the other data sets. Most interesting are the
changes in CSP reports. We see much fewer CSP reports for WPM hide , as this version
does not inject nodes into the DOM. This is also highly relevant, as CSP adoption
and the directive for content restriction is on the rise [RBC+20]. We checked whether

16https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequ

est/ResourceType
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Table 9.11: Comparison of HTTP request resource types

r1 r2 r3

Resource type WPM WPM hide diff. diff. diff.

csp report 784 188 -76.02% -74.19% -70.79%
media 530 610 +15.09% -15.75% -14.24%
beacon 5,951 6,622 +11.28% +8.09% +11.98%
websocket 321 302 -5.92% -6.29% -3.63%
xmlhttprequest 58,867 6,1702 +4.82% +3.21% +7.52%
imageset 5,730 5,982 +4.40% +3.89% +12.04%
font 9,608 9,356 -2.62% -0.87% -1.23%
object 50 49 -2.00% 0.00% +6.38%
main frame 3,955 3,883 -1.82% -1.45% -0.84%
image 116,296 118,068 +1.52% +5.86% +5.65%
script 83,239 84,385 +1.38% +1.85% +2.11%
sub frame 15,393 15,592 +1.29% +2.81% +4.86%
other 95 96 +1.05% -6.32% +6.67%
stylesheet 9,943 10,028 +0.85% +1.39% +2.11%

Total 310,737 316,673 +1.91% +3.37% +5.32%

Table 9.12: HTTP requests to ad/tracker resources

EasyList EasyPrivacy

WPM WPM hide WPM WPM hide

r1 43,238 +1.64% 39,063 -1.64
r2 41,659 +5.64% 37,710 +5.37
r3 41,418 +5.81% 34,402 +7.85

any remaining CSP reports were due to WPM hide , but none were. Note that the
WPM column offers insights into how often WPM fails to install its hooks. In the
worst case out of our three data sets, WPM failed to do so on 113 of 1,487 sites.

More ad/tracker HTTP-traffic. To assess the number of trackers and advertisers
in traffic, we use the same approach as previous works [ADZ+20; JSS+21; CLB+22]:
use the EasyList and EasyPrivacy blocklists17 to identify trackers. Around a quar-
ter of all HTTP traffic falls into this category. We further see that both machines
encounter a significant difference in traffic by advertisers and trackers (p-value <
0.0001). In most cases, this is a significant increase (∼5%), though r1 is an outlier in
this regard (see Table 9.12).

Significantly more tracking cookies. For cookies, we contrasted the number of
cookies between both variants per site. We find that the number of cookies served
differs significantly for many sites, both for first parties as well as third parties (p-
value < 0.0001). As shown in Table 9.13, WPM receives fewer cookies, with the
effect increasing each repetition (possibly due to WPM being re-identified). We see a
similar effect in the number of sites that serve an unequal number of cookies to both
machines: in r1, 353 sites serve more cookies to WPM hide vs. 156 sites serving more

17https://easylist.to/
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Table 9.13: Served cookies and differences with WPM hide

# first-party cookies # third-party cookies # tracking cookies

WPM WPM hide WPM WPM hide WPM WPM hide

r1 28,826 +3.33% 31,335 +5.05% 3,031 +41.70%
r2 28,841 +3.06% 30,977 +7.12% 2,929 +52.13%
r3 28,744 +4.23% 29,692 +8.11% 2,719 +59.65%

cookies to WPM ; this difference increases in r3 to 394 sites for WPM hide vs. 134 sites
for WPM .

We investigated whether the difference in cookies was due to tracking cookies. To
determine whether a cookie can be used for web tracking, we use the approach of
Englehardt et al. [ERE+15], as refined by Chen et al. [CIP+21]. According to this
method, a cookie may be used for tracking when:

1. it cannot be a session cookie,

2. the length of the cookie is eight or more characters (excluding surrounding
quotes),

3. the cookie is always set,

4. the cookie is “long-living” (at least three months), and

5. the values differ significantly based on the Ratcliff-Obershelp algorithm [Bla21]
among all runs.

In data set r1, 3,031 cookies satisfy these criteria for WPM , while 4,295 cookies for
WPM hide match; a strong increase of 41.70%. This effect is again amplified in the
other two runs.

Up to 37%-points more JS calls caught. As discussed in Section 9.5.4, WPM ’s
instrumentation does not cover all access methods. We track accessing API calls and
their context in WPM hide to determine what calls are recorded by WPM hide , but
missed by WPM . Figure 9.6 depicts the JavaScript APIs call in r1 for WPM hide .
The black bar depicts the portion of calls covered by WPM ; the rest is not. Some
properties were almost entirely covered (Screen.top, 99% coverage), while others were
not. Most prominently not covered is the Screen.availLeft API, where WPM records
only 63% of calls that WPM hide catches.

9.7 Conclusions

Our work calls into question the fidelity of web measurement tools. This fidelity has,
so far, been mostly overlooked in measurement studies (see Table 9.1). We show
that the most widely used web measurement tool, OpenWPM, is easily detectable by
websites. We even found OpenWPM-specific detectors in practice. Moreover, this
detectability may be leveraged by websites to hide actions from OpenWPM or even
attack OpenWPM’s functionality, undermining the fidelity of its results.
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Figure 9.6: API calls in the context of DOM creation

This illustrates that web measurements should account for operating in a hostile
environment. We show that OpenWPM can be hardened for such an environment,
mitigating these adverse effects. However, similar caution should be taken with other
web measurement tools. We have shown that the browser automation frameworks
underpinning most measurement studies are themselves detectable. Our work should
thus not be seen as an indictment of OpenWPM in favour of self-written one-off
tooling. On the contrary, we need hardened tooling, which requires significant devel-
opment effort. Our work is a call to action for web measurement studies to ensure
any potential bot-induced bias in the measurement is eliminated. This means taking
a hostile environment into account while developing tooling, and validating results
specifically with a view to hostile actors.

Towards robust instrumentation. Our findings show that deployment of instru-
ments via page context is fraught with difficulties. Ideally, the instrumentation is
handled outside page scope, for example, by leveraging the debugger API. Unfor-
tunately, Selenium v4 (the version used by OpenWPM) does not support this API
currently. Alternatively, instrumentation could be integrated into the browser’s source
code. This supports great flexibility in hiding distinctive aspects of the browser fin-
gerprint at the cost of significant additional maintenance overhead. This would slow
the adoption of new browser versions; however, OpenWPM’s adoption rate is already
slow – the tradeoff may thus be worth it.

Selenium detection on the rise. In comparison with previous studies, we see that
the number of sites looking for the webdriver property has significantly increased in
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Table 9.14: Studies measuring webdriver property access on front pages

when analysis corpus # sites %

[JK19] 2019–10 dynamic Alexa 50K 2,756 5.51%
This work 2020–07 combined Tranco 100K 13,989 13.99%

– static 11,957 11,96%
– dynamic 12,194 12.19%

the span of less than one year (see Table 9.14). This rapid change clearly suggests
that websites are swiftly transitioning to responding differently to automated clients
than to regular clients. Therefore, web studies should no longer ignore bot detection’s
potential impact on their study.

Recommendations for web measurement studies. In general, do not use vir-
tualisation or headless or display-less modes. Studies that focus on measuring the
amount of HTTP traffic seem to not be affected by detection and can, for now, get
away with ignoring bot detection. In contrast, studies focussing on web tracking or
cookies are affected (see Table 9.13) and must take bot detection into account. Fi-
nally, studies that automatically crawl beyond the front page will also be exposed to
bot detectors significantly more often.

Recommendations for automated web measurement tooling. We identified
two main challenges for measurement tooling: tooling resilience and reliability of
its measurements. Tooling resilience requires assuming that the measured site is
actively trying to break the measurement tool. This thus necessitates programming
the measurement tooling defensively. Secondly, reliability of measurements is under
pressure if the tooling’s interactions with the measured objects deviate significantly
from regular interactions. To minimise this effect, web measurement tools must take
effort to blend in with human-originating traffic. Concretely, that includes avoiding
DOM pollution as well as avoiding or reducing other tell-tale traces. Finally, these
aspects should both be checked. That is: the detectability of the measurement tool
should be checked using standard techniques, such as fingerprinting (cf., Chapter 7),
template attacks [SLG19], and behaviour (cf., Chapter 8). Currently, there are no
standardised ways to check measurement platforms for susceptibility to malicious
data; however, our approach from Section 9.6.2 provides a starting point.
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Chapter 10

Conclusions

This thesis aims to overcome obstacles to automated web measurements and to de-
termine the impact of doing so. To that end, it identifies two obstacles to automated
measurements: those that treat automated visitors differently as a side effect of some
other measure (unintended obstacles) and those that deliberately treat automated
visitors differently (deliberate obstacles).

Overcoming unintended obstacles. In the first part of this thesis, we explore the
automation of post-login studies and investigate differences emerging from view-based
pricing. Our evaluation with Shepherd demonstrates that login studies can be scaled
to thousands of sites while providing better efficacy than other login methods. At
the same time, we adhere to ethical constraints by using crowd-sourced credentials,
which, compared to the websites categories in the Tranco 1M list, do not show an
untenable degree of bias. The latter is essential to consider Shepherd as a viable
option for future post-login studies.

Further, our study of view-based price differentiation provides insights into the
differences between desktop and mobile browsers, mobile apps, and localisation. For
that, we design a framework that synchronises heterogeneous devices and use it to
sample data simultaneously from multiple travel agencies. We conduct measurements
on physical devices like desktops and mobiles to reduce differences from detection
measures during the data sampling. Our study shows various indications for price
differentiation among different views and underlines such comparisons’ value. How-
ever, more work is needed to assess the extent of such practices.

Overcoming deliberate obstacles. In the second part, we investigate challenges
in detecting bots through fingerprinting and behaviour to overcome deliberate obsta-
cles. We address the challenge of finding detectable properties in bot frameworks by
comparing bots to browsers with the same browser engine. We demonstrate that this
is sufficient for identifying detectable properties for many popular automation frame-
works. Moreover, our study of one million websites exhibits that detectors using such
bot-identifying properties are widely prevalent. As many web studies rely on automa-
tion frameworks, our finding leaves a discomforting feeling about the reliability of web
measurements.

With respect to behavioural detection, we encountered that Selenium’s interaction
is easily detectable by default. In addition, we found libraries for interaction simu-
lation unsuited for measurement frameworks, as they need better integration and in-
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creased API coverage. We address this with a Selenium-ready interaction API based
on human-user interaction data. To classify our resulting library HLISA, we discussed
a model that ranks detectors and simulators for interaction based on their capabili-
ties. Our model and classification highlight that detectors should not rely on tests to
determine whether interaction lies within human-possible boundaries. Instead, solid
defences should check interaction for consistency to be prepared for frameworks like
HLISA.

Assessing the effect of overcoming obstacles. We conducted one case study
for each previously mentioned part to assess the impact of overcoming obstacles. The
results of these case studies provide evidence that overcoming obstacles leads to more
reliable and thorough results for web measurements.

By deploying Shepherd for a session security study, we observed that flaws widely
spread through all stages of the session lifecycle. We even witnessed cases where
hi-jacking threats endured a user’s session termination as servers incorrectly upheld
sessions. We conclude that the whole session lifecycle must be considered for thorough
security evaluations of web sessions.

We further investigated the reliability of a popular web measurement framework.
To that end, we tested possible vectors to attack and detect OpenWPM and used
our findings to design a less detectable and hardened version. By conducting mea-
surements with both versions, we could retrieve a before and after picture for the
reliability of web measurements with this tool. Our results show that web studies
without bot detection countermeasures risk a bias depending on what they measure.

10.1 Limitations

The research in this thesis provides a significant step in overcoming unintended obsta-
cles. Our progress relies on an extensive engineering effort, especially for site-specific
scrapers. This approach is acceptable for answering the research questions of this
thesis, but these efforts are not readily transferable. In the future work section, we
discuss several directions to address this.

Another limitation concerns the evaluation of anti-bot detection approaches. We
evaluated our bot detection countermeasures to assess their effectiveness against com-
mercial bot detectors we identified in the wild. Whereas looking for a bot fingerprint
gives a concrete answer (yes or no), behavioural detection typically uses estimations
and probabilities. This circumstance makes attributing changes in website responses
to behavioural detection complex – which is further compounded by the fact that
many websites use a combination of concrete and probabilistic techniques to identify
bots. That is, it is likely but not 100% clear whether a change to a website was
due to behavioural detection. How to test the efficacy of countermeasures against
behavioural detection remains an open question.

Finally, overcoming obstacles requires the development of appropriate tooling,
which can be a heavy burden for researchers. Hence, tools should be available to
ease overcoming obstacles. The tools developed in this thesis work towards closing
this gap. Nevertheless, propagating such tools can elevate automated attacks, which
implies an ethical conflict. We encountered such a conflict during the sharing process
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for Shepherd. On the one hand, shutting Shepherd away limits the potential for
misuse. On the other hand, this strictly limits its value as a research tool. Therefore,
we chose a middle ground by applying responsible sharing. In the next section, we
discuss our approach and describe how to advance responsible sharing to become a
standard procedure in the security community.

10.2 Discussion

May web studies ignore bot obstacles? Leaving obstacles to measurements
unaddressed has been surprisingly common in some areas. We witnessed this during
our literature review on session security studies (see Section 6.8). Similarly, only
a small fraction of measurement studies account for bot detection (see Section 9.2
and the work by Demir et al. [DGU+22]). Given these insights, we wonder whether
automated studies must account for obstacles. The answer to this question may hinge
on two aspects: the prevalence of obstacles and their impact on a study’s results.
Concerning the prevalence, we see that impediments to automated measurements
are common. We observed this for deliberate obstacles in two independent scans for
bot detection (Chapters 7 and 9). Further, various features besides already highly
present logins can result in unintentional obstacles to automation, e.g., responsive
sites, GDPR cookie banners, geo-blocking and others.

Nevertheless, the community lacks a complete view of how obstacles impact results.
Under this circumstance, we see three cases under which measurements should be
judged: must account for obstacles, undecided or in-between, and can ignore them.
This implies that the community should question the validity of recent studies falling
into the first category when not accounting for obstacles. For older studies, however,
conditions might divert from current conditions. Thus, repeating such studies may
be required to evaluate whether a study’s findings still hold.

How to responsibly share weaponisable research? Most tools developed for the
studies in this thesis are available as open-source projects. For the Shepherd tool, we
decided that the code is too easily weaponised to be made publicly available (see the
discussion in Section 4.1). Nevertheless, we wanted to allow other researchers to build
on our work. Therefore, we decided to share the tool responsibly. Thus, on the project
page, we stated that we would make the code available under certain conditions. The
conditions ensure adequate safeguards are in place to prevent misuse.1

Our case is certainly not exceptional, as security research often produces weapon-
isable tooling. Nevertheless, not making tooling available is a common and widely
accepted practice. Missing access to tooling can negatively affect progress in research
and may be a barrier to improvement. For example, the development of tooling can
require – as sometimes demanded by reviewers – the comparison to competing so-
lutions under equal conditions. Also, research tooling can be an important building
block for developing advanced solutions. More importantly, access to tooling can
contribute to discovering flaws, which will increase the robustness of research tooling
in the long run. Therefore, we argue that this practice should be deprecated and re-

1The requirements for the Shepherd case are listed at https://bkrumnow.github.io/shepherd/

#availability
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placed with responsible sharing. This raises the question of how to set up responsible
sharing. The obvious approach is to let the research group where the tool originated
be responsible for sharing. However, that anoints them as gatekeepers, even though
they have a conflict of interest. Moreover, their decisions may be biased, as they are
most likely affected by what they share. Thus, responsible sharing should be a joint
effort by the community rather than a single research group.

Practising responsible sharing for Shepherd over the last years, we could gather
experiences that may be helpful to establish a fairer and broader applicable system.
Overall, we see three steps that can remediate the problem above and improve the
process:

1. Introducing mediators can address the gatekeeper situation. For that, respon-
sible sharing could happen on an institutional or venue level, i.e., they evaluate
requests, participate in defining conditions for sharing, and control access to
tools. However, both solutions have advantages and disadvantages. For exam-
ple, reviewers at scientific venues are already familiar with the research and are
often experts in the field, which makes them suitable candidates for defining
sharing conditions. In return, institutions are most likely aware of certain re-
strictions, such as local laws. Thus, a combination of both might be the best
solution.

2. We see pressure on the institutional level as an important vehicle to bind a
requester to their obligations, e.g., containing access to the source code, com-
plying with given constraints, staying inside of ethical boundaries, and so forth.
We implemented this for Shepherd by requiring the involvement of a permanent
staff member who has authority and takes responsibility for a project.

3. Requirements for responsible sharing vary with a particular tool. Thus, condi-
tions for sharing may be more permissive or restrictive. Expressing conditions
accurately can be supported by providing a set of rules or specific licences. This
is similar to the approach of open source software licences, but with the aim of
restricting the proliferation of tools and the clarification of related aspects, such
as necessary protection measures, handling of collected data, and so on.

10.3 Future work

The concepts and studies presented in this thesis open various avenues for future
research. Given the results of our case studies, a promising direction is to measure
the impact of overcoming obstacles for a wide range of privacy and security aspects.
This includes deliberate and unintended obstacles, as well as combining both of them.
To facilitate this, we must develop new tooling that inherently accounts for obsta-
cles. Currently, available frameworks promise to satisfy either reliability or multi-view
measurements. Future research should explore how to design instrumentation that is
reliable but also portable to other platforms. This would also enable the application
of the here presented concepts on a larger and more diverse set of clients, such as
in-app web views [Ste18].

Another important direction for research is to control the influence of confounding
factors (e.g., content updates, data replication among web servers, cross-site tracking,
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etc.). While these can affect measurement results, there is no consensus on controlling
them. Standardised controls would help the community to conduct more robust
measurements. The first step toward this goal is the development of a taxonomy to
gather potential confounding factors.

Finally, to make overcoming unintended obstacles more transferable, we envision
a more generic approach to scraping, which would significantly reduce the engineering
effort required to develop and maintain scrapers. A formal approach, e.g., based on a
grammar for scraping, could prove a viable path for site-specific scrapers. For more
generic scraping challenges, such as identifying specific actions (login/logout buttons),
a multi-lingual machine-learning approach could provide a key step.
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[MGE+13] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris. Crowd-assisted
search for price discrimination in e-commerce: first results. In Proc. 9th ACM Conference
on Emerging Networking Experiments and Technologies (CoNEXT’13). ACM, 2013.
doi: 10.1145/2535372.2535415.

178

https://doi.org/10.1145/1982185.1982511
https://doi.org/10.1145/3355369.3355599
https://doi.org/10.1145/3442381.3450050
https://doi.org/10.1145/3487552.3487857
https://doi.org/10.2478/popets-2020-0079
https://doi.org/10.2478/popets-2020-0079
https://doi.org/10.1080/00140139.2013.835074
https://doi.org/10.1007/978-3-319-62105-0_7
https://doi.org/10.1109/EuroSP.2019.00047
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/3359183
http://www.open.ou.nl/hjo/supervision/2021-godfried-meesters-msc-thesis.pdf
http://www.open.ou.nl/hjo/supervision/2021-godfried-meesters-msc-thesis.pdf
https://doi.org/10.1145/2897845.2897889
https://doi.org/10.1145/2897845.2897889
https://doi.org/10.1145/2390231.2390245
https://doi.org/10.1145/2390231.2390245
https://doi.org/10.1145/2535372.2535415


Bibliography

[MGF19] Johan Mazel, Richard Garnier, and Kensuke Fukuda. A comparison of web privacy pro-
tection techniques. Comput. Commun., 144, 2019. doi: 10.1016/j.comcom.2019.04.005.

[MHB+17] Georg Merzdovnik et al. Block me if you can: A large-scale study of tracker-blocking
tools. In Proc. 2nd IEEE European Symposium on Security and Privacy (EuroS&P’17).
IEEE, 2017. doi: 10.1109/EuroSP.2017.26.

[MJ21] Marius Musch and Martin Johns. U can’t debug this: detecting javascript anti-debugging
techniques in the wild. In Proc. 30th USENIX Security Symposium (USENIX Secu-
rity’21). USENIX Association, 2021.

[MLK+10] Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geoffrey M. Voelker,
and Stefan Savage. Re: captchas-understanding captcha-solving services in an economic
context. In Proc. 19th USENIX Security Symposium (USENIX Security’10), 2010.

[MN22] Maaz Bin Musa and Rishab Nithyanand. ATOM: ad-network tomography. Proc. Priv.
Enhancing Technol., 2022(4), 2022. doi: 10.56553/popets-2022-0110.

[MS12] K. Mowery and H. Shacham. Pixel Perfect: Fingerprinting canvas in HTML5. In Proc.
Web 2.0 Security & Privacy (W2SP ’12). IEEE Computer Society, 2012.

[MSH19] Max Maass, Stephan Schwär, and Matthias Hollick. Towards transparency in email track-
ing. In Proc. 7th Annual Privacy Forum (APF’19), volume 11498 of LNCS. Springer,
2019.

[MSN17] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. Dial one for scam: A large-
scale analysis of technical support scams. In Proc. 24th Annual Network and Distributed
System Security Symposium (NDSS’17). The Internet Society, 2017.

[MWP+17] Max Maaß, Pascal Wichmann, Henning Pridöhl, and Dominik Herrmann. Privacyscore:
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Appendix A

Default Search Settings in Price
Differentiation Study

For our study described in Section 5.3, we compared the default settings in each
store’s search mask. The results are summarised in Tbl. A.1. We found additional
services that can be selected within the search mask when using AirFrance. This
option is disabled by default on desktops, and it is unavailable in the app. Eurowings
is the only vendor that does not offer fare selection via its search mask. Instead, we
ensured to use prices shown on the result pages, which always used the lowest fare in
our cases. For Opodo, we found that users can select between different restrictions
on stops on their trips. However, no restriction is the default option for all checked
store.

Table A.1: Overview of default settings in evaluated search masks

Airline Store Route Travellers Fare Custom options

AirFrance .de round-trip 1 adult economy bluebiz off
.fr round-trip 1 adult economy bluebiz off

app round-trip 1 adult economy n/a

Eurowings .de one-way 1 adult n/a n/a
.fr one-way 1 adult n/a n/a

app one-way 1 adult n/a n/a

Expedia .de round-trip 1 adult economy n/a
.fr round-trip 1 adult economy n/a

app round-trip 1 adult economy n/a

Kayak .de round-trip 1 adult economy 0 bags
mob. round-trip 1 adult economy 0 bags
app round-trip 1 adult economy 0 bags

Opodo .de round-trip 1 adult economy No stop restrictions
.fr round-trip 1 adult economy No stop restrictions

app round-trip 1 adult economy No stop restrictions
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Appendix B

Notes on HLISA

Section B.1 provides an overview of all events we identified as possible candidates to
measure interaction (see Section 8.3). In Section B.2, we give a full API specification
for HLISA, corresponding to our description from Section 8.4.

B.1 Events related to or triggered by interaction

• Document:
– copy

– cut

– dragend

– dragenter

– dragleave

– dragover

– dragstart

– drag

– drop

– fullscreenchange

– gotpointercapture

– keydown

– keypress

– keyup

– lostpointercapture

– paste

– pointercancel

– pointerdown

– pointerenter

– pointerleave

– pointermove

– pointerout

– pointerover

– pointerup

– scroll

– selectionchange

– selectstart

– touchcancel

– touchend

– touchmove

– touchstart

– transitionend

– transitionrun

– transitionstart

– visibilitychange

– wheel

• Window:
– resize

– focus

• Element:
– auxclick

– blur

– click

– contextmenu

– dblclick

– focusin

– focusout

– focus

– mousedown

– mouseenter

– mouseleave

– mousemove

– mouseout

– mouseover

– mouseup

– select
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B.2 – HLISA API description

B.2 HLISA API description

Table B.1: The HLISA API

API function Args Description

HLISA ActionChains() webdriver Constructor to create an action chain

perform() Executes actions in a chain

reset actions() Removes all actions from the current chain

pause() duration Pauses the execution of the action chain
(in sec)

move to() x,y Moves the cursor from the current position
to a given position

move by offset() x, y Moves the cursor relative to the current
position

move to element() element Moves the cursor to a position within an
element’s boundaries

move to element with offset() element,
x, y

Moves the cursor relative to an element’s
top-left corner

move to element outside viewport() element Scrolls element into the viewport before us-
ing move to element

click() element Clicks. If element is provided, first per-
forms move to element

click and hold() element Same as click without release action

release() element Same as click without press action

double click() element Same as click with an additional click
shortly after the first

send keys() keys Executes a human typing rhythm for the
given keys

send keys to element() element,
keys

Selects the element, then executes the
send keys function

scroll by() x, y Scrolls the viewport till a distance is taken

scroll to() x, y Scrolls until the specified position is in the
top left corner

context click() element Same as click using a right mouse button

drag and drop() element1,
ele-
ment2

Press left button over element1, move
mouse to element2, release mouse button

drag and drop by offset() element,
x, y

Press left mouse button on element, moves
to target offset (x, y) and releases button

functionname() replacement for Selenium function to interact human-like
functionname() new function, not available in Selenium
functionname() passthrough to Selenium’s implementation
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Appendix C

OpenWPM in Literature

The following provides additional material to our literature study from Section 9.2.
We list venues where OpenWPM-based studies were published, including our own
work, in Tbl. C.1. Tbl. C.2 provides a detailed view on studies that we considered
during our analysis. Each category that applies to a study is marked with a “✓”.
For those studies that measure certain aspects, but rely on out of bound mechanisms
(e.g., by deploying a proxy) and do not rely on OpenWPM’s instrumentation are
marked with a “◦”. Running modes are shortened in the table as follow: unspecified
(u), native (n), headless (h), xvfb (x), docker (d), virtual machine (v). Papers that
are not included in the seed list, but where added by us, are highlighted with a “⋆”.
Studies marked with a “†” use an OpenWPM data set, but do not perform their own
data acquisition.

Table C.1: Publications using OpenWPM aggregated by year and venue

2014 2015 2016

CCS 1 WWW 1 IFIP AICT 1
CoSN 1 NDSS 1 CCS 1

Tech Science 1 WWW 1
W2SP 1

2017 2018 2019

NDSS 1 PETS 2 DPM 2
PETS 1 ACM TOIT 1 IDCLR 1
CODASPY 1 CCS 1 WorldCIST 1
IWPE 1 ACSAC 1 ConPro 1
Annual Privacy Forum 1 AINTEC 1 WWW 1
USENIX 1 EuroS&P 1
Appl. Econ. Letters 1

2020 2021 2022

PETS 5 PETS 4 PETS 3
WWW 4 NDSS 1 USENIX 3
TMA 2 S&P 1 WWW 2
ASIACCS 1 IMC 1 EuroS&PW 1
PAM 1 WebSci 1 CoNEXT 1
EuroS&PW 1 IEEE TSNM 1
PrivacyCon 1
EuroS&P 1
GLOBECOM 1
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Table C.2: Overview of previous studies using OpenWPM for web studies

uses measures/analyses performs visits uses mentions

Year Ref. Mode VM Cookies HTTP JS Scrolling Clicking Typing Sub-pages Anti-BD BD

2014 [AEE+14] u ✓ ◦ ◦ ✓
[RB14] u ✓ ✓

2015 [ERE+15] u ✓ ✓
[KB15] u ✓ ◦

[AGH15] h ✓ ✓ ✓ ✓

[FMS+15] u ✓ ✓ ✓

2016 [AJ16] u ✓ ✓ ✓
[EN16] x ✓ ✓ ✓ ✓ ✓

[SDA+16] u ✓ ✓

2017 [MSN17] u ✓ ◦ ✓ ✓

[BRA+17] u ✓ ✓ ✓
[RK17] u ✓

[OEN17] u ✓

[MWP+17] u ✓ ✓

[LWP+17] h
[Sch17] u ✓

2018 [GKR+18] u ✓
[EHN18] u ✓ ✓ ✓ ✓ ✓

[BZK+18] h ✓ ✓

[DAB+18] u ✓ ✓ ✓
[VHS18] u ✓
[DMF18] u ✓

2019 [CHP+19] u ✓ ✓ ✓ ✓

[VAW+19] d
[SK19] u ✓ ✓ ✓

[LLZ+19] u ✓ ✓

[MAF+19] u ✓ ✓ ✓
[RUW19] 0
[MGF19] u ✓

[AOM+19] u ✓
[SM19b] u ✓ ✓ ✓
[MSH19] u ✓

[SII+19] u ✓ ✓

[VáFG+19] u ✓ ✓ ✓
[ESORICS19] h ✓ ◦ ✓

[UTD+19] u ✓ ✓ ✓
[SM19a] u ✓

2020 [FBL+20] u ✓ ✓ ✓
[CNS20] u ✓ ✓ ✓
[YY20] u ✓ ✓ ✓ ✓

[AEN20] u ✓ ✓ ✓ ✓ ✓ ✓
[KTK20] d ✓ ✓ ✓ ✓ ✓

[ZBO+20] x ✓ ✓ ✓ ✓ ✓

[ADZ+20] u ✓ ✓ ✓

[AJP+20] h ✓ ✓ ✓ ✓

[UDH+20] u ✓ ✓ ✓ ✓ ✓ ✓ ✓

[UTD+20] u ✓ ✓ ✓ ✓ ✓ ✓ ✓

[PDA+20] u ✓

[FSK+20] u ✓ ✓

[SCL+21] u ✓ ✓ ✓ ✓ ✓
[HdTS20] u ✓ ✓
[DF20b] u ✓
[SIK20] n ✓ ✓
[DF20a] u ✓

2021 [CUT+21] u ✓ ✓ ✓ ✓
[RTM21] u ✓ ✓ ✓ ✓
[IES21] u ✓ ✓
[IMC21] n ✓ ✓ ✓ ✓ ✓
[TM21] u ✓
[RM21] u ✓

[HDU+21] u

[VAA+21] u ✓ ✓ ✓ ✓
[DMF21] u ✓ ✓

2022 [CLB+22] u ✓ ✓ ✓

[SIE+22] u ✓ ✓ ✓

[IWN+22] u ✓ ✓ ✓ ✓ ✓ ✓

[FSL+22] u ✓ ✓ ✓

[DGU+22] n/h ✓ ✓ ✓ ✓ ✓

[YSM+22] h ✓ ✓ ✓
[MN22] u ✓ ✓ ✓

[SAM+22] u ✓ ✓ ✓ ✓

[BKC+22] u ✓ ✓ ✓ ✓
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